Nano-structured Non-Platinum Catalysts for Automotive Fuel Cell Application

Alexey Serov¹, Kateryna Artyushkova¹, Ellazar Niangar², Chunmei Wang², Nilesh Dale², Frederic Jaouen³, Moulay-Tahar Sougrati,³ Qingying Jia⁴, Sanjeev Mukerjee⁴ and Plamen Atanassov*¹

Affiliations:
¹Chemical & Biological Engineering Department, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131.
²Zero Emission Research, Fuel cell and Battery Laboratory, Nissan Technical Center North America, Farmington Hills, MI 48331.
³Institut Charles Gerhardt de Montpellier, UMR 5253 CNRS - Université de Montpellier, Agrégats, Interfaces et Matériaux pour l’Energie, 2 Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
⁴Deptartment. of Chemistry and Chemical Biology, Northeastern University, 364 Egan Research Center, 360 Huntington Avenue, Boston, MA 02115, USA

Correspondence to:
Plamen Atanassov plamen@unm.edu

Abstract: A highly active and durable non-platinum group metal (non-PGM) electrocatalyst was synthesized at high temperature from a catalyst precursor involving a ferrous iron salt and a nitrogen-containing charge-transfer salt as a precursor to form a nano-structured catalyst with performance level that makes it suitable for automotive applications. Such precursors have not been previously investigated for non-PGM catalysts. The synthesized material belongs to the class of metal-nitrogen-carbon catalysts and possesses an open-frame structure controlled by the silica-templating synthesis method. Thorough characterization using X-ray photoelectron, Mössbauer and in situ X-ray absorption spectroscopies demonstrates the successful formation of FeNxCy moieties that are active towards the oxygen reduction reaction. We report high kinetic current densities and high power performance in both rotating disk electrode and membrane electrode assembly studies. This Fe-N-C catalyst, jointly investigated by academic and industry partners, has shown high durability under different protocols, including that defined by the US Department of Energy Durability Working Group and Nissan’s load cycling protocol. In summary, the present Fe-N-C catalyst is highly active and durable, making it a viable alternative to Pt-based electrocatalysts for automobile fuel cell applications.
Leading automobile manufacturers just launched the commercialization of zero-emission fuel cell electric vehicles (FCEVs) (1-3). At the moment, all state-of-the art vehicle stacks use Platinum-based electrocatalysts on both sides of the membrane electrode assembly (MEA). The MEA and Pt electrocatalyst contribute 40-50% of the total stack price (4), resulting in high FCEV costs and affecting its market introduction. For successful commercialization of FCEVs, the amount of platinum in the stack should be substantially reduced, ideally down to zero with non-platinum group metal (non-PGM) catalysts.

Recently, several research groups have reported significant progress in the synthesis of highly active and durable non-PGM cathode catalysts (5-9). These catalysts contain transition metals (M) coordinated by nitrogen (N) inside a carbon matrix (C) and are symbolized as M-N-C catalysts. Non-templated synthetic approaches involve either i) the dispersion of M and N precursors on pre-existing carbon supports, or ii) one-pot synthesis approach with M, N and organic or metal-organic precursors (5). Complementary to these synthesis approaches, a templated synthesis approach allows for the design of hierarchically-structured materials resulting in catalysts with an open-frame morphology. The group at University of New Mexico (UNM) introduced the sacrificial support method (SSM) and applied it to the templated syntheses of both PGM (10) and non-PGM catalysts (11-19).

The SSM was successfully used for the preparation of several classes of M-N-C catalysts for oxygen reduction based on macrocycles (12), low molecular weight (11, 13-15, 18) and polymeric (17) precursors. This method allows a high level of control on the catalysts surface area and its pore size distribution through the fidelity of the template. These parameters affect water management and reactant gas transport within the catalyst layer of fuel cell MEAs and are therefore crucial for obtaining superior MEA performance and durability. The nitrogen-carbon precursors of choice at UNM contain hetero-atomic nitrogen and amino groups. (5-9, 13, 15, 18)

We describe here the properties and structure of a Fe-N-C catalyst synthesized from nicarbazin (NCB), a charge-transfer organic salt. To the best of our knowledge, charge transfer salts have not been previously used in the synthesis of M-N-C catalysts. This catalyst shows high activity and durability and is therefore a promising candidate for future polymer electrolyte membrane fuel cell stacks.

Vehicle stack operation conditions (humidity, backpressure, etc.) put specific requirements on the design of cathode materials. Our recent generation of catalysts were mainly developed for passive (air-breathing) cathodes for portable fuel cell applications. (11-13, 15, 18) In order to meet automobile specifications, we have optimized the SSM to i) increase the number of defects and, therefore, the dispersion of active sites in the graphene nano-sheets, ii) ensure integration of Nafion® with the Fe-containing, nicarbazin-derived (Fe-NCB) catalysts, iii) and improve the water management by providing a material with appropriate physico-chemical properties suitable for integration in membrane electrode assembly (MEA).

A modified sacrificial support method (SSM) was used to synthesize this novel catalyst from iron and charge-transfer salt (nicarbazin) precursors (Fig. 1). As a sacrificial support, we have selected medium-surface area Cab-O-Sil® fumed silica. Iron and nicarbazin precursors were intimately mixed with the fumed SiO₂ particles followed by high temperature heat treatment in a nitrogen atmosphere. After the pyrolysis step, HF leaching was used to remove the sacrificial support (silica) and unreacted iron species (metal iron particles and / or iron oxides). A second
pyrolysis in a reactive atmosphere (NH$_3$) was then performed to remove volatile HF-derived species, to introduce additional surface defects, and to extend the open-pore structure created by the removal of the sacrificial support. SEM images in Fig. 1 show that the Fe-NCB catalyst has several levels of porosity originating from the removal of SiO$_2$ nanoparticles and from morphological defects formed during the decomposition of nicarbazin at high-temperature. TEM imaging (Fig. 1) shows an open structure with uniform morphological units. High resolution TEM (Fig. 1, inset) shows graphitic planes along with an amorphous carbon phase. While EDS analysis confirmed the presence of Fe, Fe-based particles could not be observed in the TEM images, suggesting that iron particles are absent or that they are extremely small and homogeneously throughout the nitrogen-enriched carbon network.

Fig. 1. TEM (a) and SEM (b) images for the Fe-NCB catalyst synthesized at T=900°C in N$_2$ for X minutes with Fe:NCB ratio 1:8, second heat treatment at T=950 °C for 30 minutes in NH$_3$. Insert in (a): the chemical formula of the charge-transfer salt, nicarbazin.

X-ray photoelectron spectroscopy (XPS) detected 4.7 at% of nitrogen and approximately 0.4 at.% of iron, values typically observed for M-N-C electrocatalysts synthesized in our group (Fig. S1, Supporting Information). (18) The presence of a significant amount of pyridinic nitrogen (established from the XPS binding energy at 398.8 eV) as well as substantial amount of nitrogen associated with Fe (interpreted as Fe-N$_x$ centers and observed at a binding energy of 399.6 eV) is important, as these chemical moieties were previously linked to high activity of M-N-C electrocatalysts. (14, 20-23) High resolution Fe 3d spectra confirmed the presence of various types of oxides, small amount of Fe-Fe or Fe-C moieties and, more importantly, substantial presence of Fe coordinated to N.

Iron speciation in the Fe-NCB catalyst was further characterized with 57Fe Mössbauer spectroscopy (Fig. 2). This technique is well suited for the investigation of even minuscule modifications in the energy levels of iron nuclei resulting from interactions with the electronic orbitals, down to 1 part to 10^{10}. Three types of nuclear-electronic interactions exist, i.e. electric monopole, electric quadrupole and magnetic dipole interactions, leading to a singlet, doublet, and sextet in the absorption spectrum, respectively. As was reported before and as confirmed by XPS in this study, iron-based catalysts synthesized at high temperatures comprise a plurality of iron species that have been detected either by Mössbauer, XPS or X-ray absorption spectroscopy. (23-26) Five Fe species are clearly identified in the Fe-NCB catalyst resulting in a singlet, two doublets (D1 & D2) and two sextets (Fig. 2). The Mössbauer parameters of each component are shown in Table 1. The singlet is assigned to either γ-Fe or super-paramagnetic Fe nanoparticles
D1 and D2 are assigned to a four-fold nitrogen or nitrogen-carbon coordination of FeII in low-spin (LS) and medium-spin state (MS), respectively (23, 25, 26), while the sextet’s parameters match those of α-Fe and iron carbide. The assignments of D1 and D2 are subject of ongoing research related to the exact site structure and to the integration of FeN$_4$ or FeN$_2$C$_2$ moieties, which can be viewed either at defect sites within a graphene layer (edge defects), or as a structure bridging two graphene zigzag- or armchair-edges. The metallic iron and iron carbide species observed in Fe-NCB must be wrapped in a graphitic layer, otherwise they would have been dissolved during the template etching step in which HF was used. The observed ORR activity is most likely linked to the FeN$_x$ moieties related to the D1 and / or D2 spectroscopic signatures. (23, 25, 26)

![Mössbauer absorption spectrum and its deconvolution](image)

Fig. 2. Mössbauer absorption spectrum and its deconvolution for the Fe-NCB catalyst synthesized at 900°C and second heat treatment in NH$_3$ at 950°C. The measurement was performed at room temperature and calibrated vs. α-Fe foil.

Table 1. Mössbauer fitted parameters for the Fe-NCB catalyst.

<table>
<thead>
<tr>
<th>Component (assignment)</th>
<th>IS (mm·s$^{-1}$)</th>
<th>QS (mm·s$^{-1}$)</th>
<th>H (Tesla)</th>
<th>LW (mm·s$^{-1}$)</th>
<th>Relative absorption area</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Fe</td>
<td>0.04</td>
<td>-</td>
<td>33.5</td>
<td>0.37</td>
<td>4</td>
</tr>
<tr>
<td>Fe$_3$C</td>
<td>0.29</td>
<td>-</td>
<td>20.2</td>
<td>0.62</td>
<td>8</td>
</tr>
<tr>
<td>Param. or γ-Fe</td>
<td>- 0.07</td>
<td>-</td>
<td>-</td>
<td>0.67</td>
<td>14</td>
</tr>
<tr>
<td>D1 (FeIIN$_4$ LS)</td>
<td>0.33</td>
<td>0.98</td>
<td>-</td>
<td>0.80</td>
<td>30</td>
</tr>
<tr>
<td>D2 (FeIIN$_4$ MS)</td>
<td>0.51</td>
<td>2.34</td>
<td>-</td>
<td>1.83</td>
<td>44</td>
</tr>
</tbody>
</table>

The relative content of D1 or D2 is high (Table 1), demonstrating the successful integration of the majority of the iron in FeN$_x$C$_y$ molecular sites during pyrolysis. The existence of Fe-N
coordination revealed by Mössbauer spectra, (doublets) is also supported by the Fe-N binding energy in XPS at 399.6 eV. (22) From several Mössbauer studies on Fe-N-C-catalysts synthesized through various approaches, a positive correlation between the ORR activity and the absolute content of the D1 species has emerged. (22, 24, 26) In fact, the Mössbauer parameters of D1 are similar to those of FeII-phthalocyanine (FeIIPc) adsorbed on carbon supports, in which the initially planar FeN$_4$ coordination of FeIIPc interacted with the electronic support. (27) In addition, the smaller width of the Lorentzian line used for D1 than for D2 (0.8 and 1.83 mm s$^{-1}$, respectively; see Table 1) suggests a better definition of the site structure for D1 and a plurality of structures for D2. (25) Knowing the Fe-content of the catalyst (1-2 wt. %), quantification of all Fe-species is possible from their relative Mössbauer absorption area. The combined 26 % relative area of α-Fe, Fe$_x$C and γ-Fe (Table 1) expectedly accounts for approximately 10 % of the relative Fe content of the catalyst due to larger Lamb Mössbauer factors for crystalline iron species than for molecular iron species.

The local atomic structure of the Fe species in the Fe-NCB catalyst under operating conditions was further probed using in situ x-ray absorption spectroscopy (XAS). Traditional Fourier Transform (FT) EXAFS analysis up to the second shell is applied at the Fe K edge for representative data collected at 0.3 and 0.9 V vs. RHE (Fig. 3). As per norms typically associated with EXAFS analysis, statistically unique solutions were obtained for EXAFS parameters (Table 2). These are exemplified by excellent fits obtained for the phase and amplitude parameters using in situ experimental data and model parameters.

Fig. 3. Fourier Transforms of the Fe K edge XAS data and the corresponding EXAFS fit (left), and the XANES spectra (right) together with the $\Delta \mu = \mu(0.90 \text{ V}) - \mu(0.30 \text{ V})$ (inset) of the Fe-NCB catalyst. The measurements were performed at 0.3 and 0.9 V vs RHE in the N$_2$-saturated 0.1 M HClO$_4$ electrolyte at room temperature.
Table 2: Results of fitting EXAFS data obtained under in situ electrochemical operating conditions for the Fe-NCB catalyst synthesized at 900°C and second heat treatment in NH₃ at 950 °C. The measurements were performed at 0.3 and 0.9 V vs RHE in the N₂-saturated 0.1 M HClO₄ electrolyte at room temperature. Coordination number (N), phase-corrected bond length (R), Debye-Waller factor (σ²), and edge shifts (E₀) are shown for each interaction.

<table>
<thead>
<tr>
<th>Potential</th>
<th>Fe-C/N/O path</th>
<th>Fe-Fe path</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CN R (Å) σ² (Å²)×10⁻³ E₀ (eV)</td>
<td>CN R (Å) σ² (Å²)×10⁻³ E₀ (eV)</td>
</tr>
<tr>
<td>0.3 V</td>
<td>3.6(7) 2.02(2) 9(3) -5(1)</td>
<td>1.2(3) 2.51(1) 9(3) -5(1)</td>
</tr>
<tr>
<td>0.9 V</td>
<td>4.0(8) 2.01(2) 4(2) -6(2)</td>
<td>1.3(3) 2.52(1) 4(2) -6(2)</td>
</tr>
</tbody>
</table>

S₀² fixed at 0.88 as obtained by fitting the iron reference foil. The Fourier-transformed (FT) EXAFS data were fitted under simultaneous k¹²³ weighting. R range 1.0 - 3.0 Å, k range 1.95 - 10.96 Å⁻¹. The statistical errors of the least-squares fits were determined by ARTEMIS.

The two FT peaks displayed in the left of Fig. 3 clearly confirm the plurality of coordination chemistries in the Fe-NCB catalyst. The second FT peak at ~ 2.1 Å (all the radial distances given in this work are without phase correction) can be well fitted as a Fe-Fe shell with a bond length of ~2.51 Å. This bond length is close to the Fe-Fe bond length in iron carbide (2.48 Å), confirming that the Fe-NCB catalyst contains some iron carbides that are stable under the acidic and oxidizing environment. The small coordination number for Fe-Fe (CN_{Fe-Fe} ~1.2) suggests that the content of metallic iron particles is small compared to the content of the Fe-Nₓ species, and/or the size of metallic particles is sufficiently small to result in significant fraction of surface Fe with lower CN. The former hypothesis is confirmed by the small amounts of γ-Fe, α-Fe and FeₓC obtained by Mossbauer and the absence of visible particles in high resolution TEM. The constant peak intensity with the electrochemical potential indicates that the iron carbide is not directly involved in the reaction.

The first FT peak at ~1.6 Å arises from the Fe-N/Fe-C/Fe-O scattering. Nitrogen, carbon and oxygen atoms cannot be distinguished by XAS due to similar atomic weight. Owing to the bulk averaging nature of the EXAFS technique, the corresponding coordination number at 0.3 V (3.6) is a weighted average of the coordination number of the Fe-N bonds in the Fe-Nₓ species and the Fe-C bonds in the iron carbide. As the iron carbide content is relatively low, and the first shell Fe-C coordination number is small (≤ 3), it is reasonable to deduce that the Fe-N coordination number in the Fe-Nₓ species is 4. The increase in the coordination number as the potential is increased to 0.9 V suggests the adsorption of oxygenated species onto the Fe-N₄ sites. These hypotheses are further supported by the Δμ analysis discussed below.

The XANES of the Fe-NCB catalyst at 0.3 and 0.9 V vs. RHE are displayed in Fig. 3 (right). For un-γ-pyrolyzed Fe-based macrocycles, the presence of a pre-edge peak at ~7117 eV is the fingerprint for a FeN₄ square-planar coordination (28-30). Here, the absence of this pre-edge peak in the XANES of Fe-NCB is indicative of the lack of the intact planar Fe–N₄ moiety in this catalyst. The XANES edge shifts to higher energy as the potential is increased from 0.3 to 0.9 V, indicating the increase of the Fe oxidation state. The corresponding Δμ signal (inset of Fig. 3) is essentially identical to that obtained on FeTPP/βP pyrolyzed at 800 °C,(30) and can be nicely mimicked by the theoretical Δμ spectrum obtained using the FeN₄Cₓ cluster models with either a partial (y = 10) or complete destruction (y = 8) of the carbon methane bridges. In summary, the
combination of the EXAFS, XANES, and $\Delta \mu$ analysis suggest that (1) the active sites in this
catalyst are formed via the covalent incorporation of Fe-N$_4$ moieties in the di-vacant defective
centers on the carbon basal plane ($y = 10$) or in armchair edges of two adjacent graphene layers
($y = 8$), which have been widely proposed as the active sites in pyrolyzed Fe-based catalysts.(6,
30, 31) The Fe$^{2+}$-N$_4$ active site coordination at 0.3 V undergoes a redox transition to a
pentacoordinate (H)O–Fe$^{3+}$–N$_4$ at 0.90 V, and the adsorption of the (H)O species triggered by
the Fe$^{2+}$/Fe$^{3+}$ redox transition poisons the active sites.

We optimized the pyrolysis process and established that Fe-NCB heat treated at T=900°C for 1
hour has the highest activity (Fig. S2) with a value of $E_{1/2} = 0.8$V vs. RHE. The number of
electrons participating in ORR was calculated using Equation S1 and was found to be 3.8e$^\circ$.
After optimization, we then synthesized several large batches (~5 g each) of the Fe-NCB
catalyst, which were then tested at Nissan Technical Center North America in order to measure
the performance and durability of this catalyst under automotive and durability test conditions
that simulate actual stack conditions.

Rotating disk electrode (RDE) measurements at Nissan of a large laboratory batch of the catalyst
revealed a high kinetic current density at 0.8 V of $i_k = 4.6$ mA cm$^{-2}$ with a Tafel slope of 52
mV/decade (Fig. S3). The durability of the catalyst was evaluated using the DOE Durability
Working Group (DWG) proposed protocol and Nissan load-cycling protocol (see Fig. 4). (32)
Under both durability tests, the catalyst presented a drop of the half wave potential of only 3-4%
relative to the initial value, which prompted us to further evaluate it in an automotive-type MEA.
Figure 4. Durability in RDE tests under (A) DWG: 900RPM and (B) Nissan load-cycling protocols: 1600RPM. Both in 0.5M H$_2$SO$_4$ saturated with (A) O$_2$ and (B) N$_2$.

MEAs were fabricated and evaluated at Nissan Technical Center North America. Figure 5 shows the CV and MEA performance of the Fe-NCB catalyst under the recommended DOE conditions of H$_2$/O$_2$ operation, 100%RH, and 1 bar O$_2$ partial pressure. Three MEAs with the same catalyst loading of 4 mg/cm2, but different Nafion$^\circledR$ content, were investigated. CV curves of all three MEAs are shown on Figure 5(a) and indicate high capacitance of catalyst due to high surface area. The open circuit voltage (OCV) was 0.92V and did not change with increasing Nafion$^\circledR$ content. Figure 5(b) shows that increasing the ionomer content from 35% to 55% significantly changes the polarization performance. The poor polarization of the 35wt% Nafion$^\circledR$ MEA may be attributed to incomplete Nafion$^\circledR$ coverage of the non-PGM active sites. Better ionomer coverage
was achieved upon increasing the Nafion® content to 45% and 55% as supported by the significant improvement in the polarization performance. Increasing the ionomer content from 45% to 55% resulted in further increased kinetic currents. As shown in Fig. 5(c), the MEA containing the Fe-NCB catalyst with 55% Nafion® gave a kinetic current close to 100 mA cm⁻² at 0.8 V_{iR-free} for the catalysts loading of 4 mg/cm². This result was reproduced using three MEAs from three different catalyst batches, synthesized at UNM, as shown in Figure S4. The reproducibility of the high current densities obtained with this catalyst is confirmed by the practically overlapping Tafel plots. The use of Nafion® NRE211 results in substantial reduction of resistive losses and better water management, particularly at low cell voltage and high current density. (5)
In summary, this work is the first report of an M-N-C catalyst derived from the pyrolysis of nitrogen containing charge-transfer salt precursors and using the sacrificial support method to obtain a catalyst with an open frame structure. High kinetic current densities and power performance were observed in both RDE and MEA tests. The Fe-NCB catalyst was found to be durable under different test protocols: including that recommended by the US Department of Energy Durability Working Group and Nissan/FCCJ’s load cycling protocol. The high performance and excellent durability was independently validated at Nissan North America’s Fuel Cell and Battery Laboratory.

The high performance and durability of the catalyst may be related to the successful formation of large amounts of FeNxC_y sites which are active towards oxygen reduction, and the uniform open area morphology with a hierarchy of pores in which these active centers are homogeneously distributed and easily accessible to reactants.

References

Acknowledgments: The data presented in the paper and the supplementary materials are being reported to DOE Office of Energy Efficiency and Renewable Energy, Fuel Cell Technology Program, which funded this research as a contract to Northeastern University with Sanjeev
Mukerjee as a PI. Use of the National Synchrotron Light Source (Beamline X3B), Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This publication was made possible by the Center for Synchrotron Biosciences grant, P30-EB-009998, from the National Institute of Biomedical Imaging and Bioengineering (NBIB). A. Serov, synthesized all the materials and conducted the experiments at UNM and some of testing at NTCNA along with E. Niangar and C. Wang. K Artyushkova, Qingying Jia, F Jaouen and M.-T. Sougrati have performed the structural and spectroscopic characterization of the materials. P. Atanassov, N. Dale, and Sanjeev Mukerjee planned the experiments and elucidated the results with the rest of the team.