Recent Advances in the use of Mass Spectrometry to Examine Structure/Function Relationships in Photosystem II

Terry M. Bricker¹, Manjula P. Mummadiseti, and Laurie K. Frankel

Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803

¹Corresponding Author: Terry M. Bricker, Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803. Telephone: 225-578-1555, E-mail: btbric@lsu.edu

Key Words: photosynthesis, Photosystem II, tandem mass spectrometry, membrane proteins, chemical protein modification, protein-protein interactions
Abstract

Tandem mass spectrometry, often coupled with chemical modification techniques, are developing into increasingly important tools in structural biology. These methods can provide important supplementary information concerning the structural organization and subunit make-up of membrane protein complexes, identification of conformational changes occurring during enzymatic reactions, identification of the location of posttranslational modifications, elucidation of the structure of assembly and repair complexes. In this review, we will present a brief introduction to Photosystem II, tandem mass spectrometry and protein modification techniques that have been used to examine the photosystem. We will then discuss a number of recent case studies that have used these techniques to address open questions concerning PS II. These include the nature of subunit-subunit interactions within the phycobilisome, the interaction of phycobilisomes with Photosystem I and the Orange Carotenoid Protein, the location of CyanoQ, PsbQ and PsbP within Photosystem II, the identification of phosphorylation and oxidative modification sites within the photosystem, etc. Finally, we will discuss some of the future prospects for the use of these methods in examining other open questions in PS II structural biochemistry.
1. Introduction

One of the central objectives of modern biochemical investigation is understanding the structural and functional interactions within membrane protein complexes. These complexes provide the basis for cellular interaction with the environment, intercellular interaction and communication, cell adhesion, inter- and intracellular transport of nutrients, and energy transduction processes. In all photosynthetic organisms, the harvesting of light energy and its conversion to biologically useful forms rely uniformly on ensembles of extrinsic and intrinsic membrane proteins. Since the initial report of the structure of the purple bacterial reaction center over thirty years ago [1, 2], X-ray crystallography has been extraordinarily successful at providing molecular structures for most of the membrane protein complexes involved in photosynthetic electron transport. These include the aforementioned purple bacterial reaction center, cyanobacterial Photosystem II (PS II,[3-7]), cyanobacterial and higher plant Photosystem I (PS I,[8, 9]), cyanobacterial and green algal cytochrome b₆/f complexes[10, 11] and the F₁ domain of ATP Synthase (although not from a photosynthetic organism [12]). X-ray crystallography has also provided critical information concerning the structure of a variety of both intrinsic [13, 14] and extrinsic light-harvesting antennae components[15, 16]. Additionally X-ray crystallography and multidimensional nuclear magnetic resonance studies have provided structures for a variety of isolated extrinsic protein subunits of photosynthetic complexes not present in the current crystal structures of PS II. These include CyanoQ, PsbQ [17-20], CyanoP and PsbP[21-24]. The structures of a number of assembly factors for PS II including Psb27[25], Psb28 [26], Ycf48 [27] and Psb31 [28] have been solved using these methods. Single particle imaging (and cryoelectron microscopy) has also contributed significantly to our understanding of photosynthetic supercomplexes such as the PS II-LHC II[29-33], PS I-LHCII[34], the PS II-phycobilisome [35] and PS I-phycobilisome [36, 37] interactions. Atomic force microscopy is also a developing technique which may be useful in this regard [38-40].

Recently, high resolution tandem mass spectrometry, coupled with site-specific chemical modification and/or protein crosslinking methodologies[41-43], is developing into a complementary technique for the structural examination of membrane protein complexes[41, 44]. These techniques provide low resolution structural information concerning the exposure of domains of constituent subunits to the bulk solvent and the identification of interacting domains of the protein subunits within a complex. This complementary information can be quite useful. X-ray crystallography provides high-resolution structural information of the protein complex in, necessarily, a single conformational state. Protein complexes, however, are often dynamic, assuming multiple structural states as their reaction mechanism progresses. While it is sometimes possible to use inhibitors to trap the protein complex in a reaction-specific conformational state (for instance, [45, 46]), often this is not possible. It is also assumed that the crystallizable form of a protein complex represents the in vivo structure. However, it must be recognized that crystallization conditions seldom replicate in vivo conditions with regard to ionic strength and make-up, pH, constituent lipids, etc.; all of which can affect structure. It should additionally be noted that weakly bound subunits may be lost from protein complexes during the crystallization process, which involves the use of detergents, non-physiological buffer conditions, high ionic or osmotic strength, etc. Posttranslational modifications of membrane protein complexes also occur. If these are present in the subset of the protein complexes that are crystallizable, the electron density at the site of modification will be proportionally decreased. It is also possible that the presence of a posttranslational modification could preclude (or even
potentiate) the formation of crystals. Finally, proteins that interact transiently (and usually relatively weakly) with membrane protein complexes cannot be identified using X-ray crystallography alone. All of these considerations can be addressed, at various levels, by mass spectrometry.

In this review, we will first briefly discuss PS II and some of the techniques that have recently been used to examine this membrane protein complex using mass analysis. This discussion will not be exhaustive and the reader will be directed to more authoritative and complete reviews on these specific topics. We will then discuss a number of recent case studies that have productively used mass spectrometry in the examination of the structure and function of PS II. Finally, we will discuss possible future experiments which can address long-standing problems in the field.

1.1 Photosystem II, Briefly

PS II functions as a light energy-driven water-plastoquinone oxidoreductase. In all oxygenic organisms, light is trapped by and funneled through light-harvesting pigment protein complexes (extrinsic phycobilisomes in cyanobacteria and red algae and light-harvesting chlorophyll (LHC) proteins in green algae, other algae and land plants) to the reaction center of PS II, which contains a special dimeric chlorophyll, P680. After excitation, P680 becomes photooxidized and donates an electron to the primary acceptor of PS II, a protein-bound pheophytin. On the reducing side of the photosystem, this charge separation is further stabilized by the transfer of this electron first to QA and then to QB, protein-bound plastoquinones. The accumulation of two reducing equivalents on QB followed by protonation leads to the formation of plastoquinol, which is then released from PS II. Concomitantly, on the oxidizing side of the photosystem, P680+ is reduced by YZ•, a tyrosyl radical located on the D1 protein. The subsequent reduction of YZ• leads to the accumulation of an oxidizing equivalent in the oxygen-evolving complex. The accumulation of four such oxidizing equivalents, in a manner consistent with the observed S-state transitions, leads to the release of oxygen from the complex. During the accumulation of these oxidizing equivalents, protons are released into the lumenal space of the thylakoid membrane (for reviews, see [47, 48]).

High resolution crystal structures are available for thermophilic cyanobacterial PS II [3-7], which contains seventeen intrinsic membrane protein components and three extrinsic membrane components (Fig. 1). The complex is a dimer with each monomer containing thirty-five chl a, two pheophytin a, two plastoquinones, two hemes and one non-heme iron. Each monomer also contains an oxygen-evolving site which consists of a Mn4CaO5 metal cluster associated with two chloride ions. Numerous carotenoids and lipids are also associated with the complex [6]. No crystal structures are available for the higher plant or green algal PS II, although these are generally assumed to be very similar to the cyanobacterial photosystem. However, it should be noted, that these systems contain two extrinsic subunits that are not present in cyanobacteria (PsbP and PsbQ) and that they lack the PsbU and PsbV subunits [49, 50]. Additionally, numerous lines of biochemical evidence indicate that there are two copies of the PsbO protein per PS II monomer in higher plants, whereas only one appears to be present in cyanobacteria [50, 51]. In all systems, PS II is highly susceptible to photoinhibition and in vivo the complex is continuously being assembled, disassembled and repaired [52]. Reactive oxygen species (ROS) modification of unidentified residues within the photosystem is thought to trigger the photoinhibitory process [53, 54]. For complete reviews on PS II structure/function the reader
1.2 Protein Mass Spectrometry, Briefly

In a typical tandem mass spectrometry experiment, protein complexes, proteins or peptides are ionized, mobilized into the gas phase and introduced into the mass spectrometer where the mass spectra of these precursor ions are acquired. Precursor ions, which are usually selected in a data-dependent manner, are then fragmented and the mass spectra of these product ions are acquired. Software is then used to examine the population of product ions observed to be derived from a specific precursor ion. These spectra are then compared by software to a target protein library where all possible precursor ions (and the product ions from each precursor) are examined. This analysis yields sequence information which can be used to identify precursor ions and determine the location of native posttranslational modifications and/or chemically introduced protein modifications.

Two different types of mass spectrometry experiments can be used to investigate the structural characteristics of proteins and their complexes. These are termed "Top-Down" and "Bottom-Up" experiments[59-61]. The terminology is based on the entities (intact protein/protein complexes vs. peptides) introduced into the mass spectrometer. In Top-Down experiments, intact proteins are examined by mass spectrometry. A series of differentially charged ions are observed with different mass/charge ratios (m/z); this m/z envelope is deconvoluted to give the mass of the intact complex. This mass includes the mass of the protein, cofactors, posttranslational modifications, lipids and detergents associated with the complex. The precursor ions (in this case, the intact protein) are fragmented (see below). This generates a population of productionsthat can be used in principal to determine the amino acid sequence of the parent protein(s) and also identify the location of native posttranslational modifications and/or chemical modifications. In Bottom-Up experiments, proteins (often initially separated by polyacrylamide gel electrophoresis) are digested with site-specific proteases or chemical reagents and the resulting peptide fragments are resolved by reversed-phase chromatography followed by mass spectrometry. The precursor ions (in this case, proteolytic peptides of the target protein) are then fragmented yielding product ions (see below). These are then analyzed by a second round of mass analysis which is used to determine the amino acid sequences of the precursor ions. The case studies discussed below have uniformly used a “Bottom-Up” strategy in their experiments.

While a variety of ionization methods are available for organic molecule mass spectrometry, two ionization methods are typically used to analyze proteins and peptides[62]. These are matrix-assisted laser desorption/ionization (MALDI) and electro-spray ionization (ESI). These are soft ionization techniques, which generally do not fragment the molecules under analysis and, under the appropriate conditions, maintain non-covalent interactions. In the studies that we will discuss, electro-spray ionization (ESI) was generally usually used as an ionization method.

Numerous types of mass spectrometers are available to analyze biological samples. For in-depth information, the reader should consult these excellent reviews [63-65]. Most of the recent studies examining PS II have utilized either Fourier transform ion cyclotron resonance (FTICR) or linear ion trap quadrupole-Orbitrap instruments (LTQ-Orbitrap) (both of these instrument types use Fourier transform algorithms to deconvolute the raw experimental data). The principal difference in these instruments is that in the case of FTICR, ions orbit in a
magnetic field generated by high-field superconducting magnets while in Orbitrap instruments the ions orbit in an electric field. Both offer extremely high mass accuracies and femtomole sensitivity (Table 1).

Several fragmentation techniques are available including collision-induced dissociation (CID), electron-capture dissociation (ECD), and electron transfer dissociation (ETD)[64]. In the studies that we will discuss, CID has been uniformly used. In CID, the precursor ions collide with gas ions which are at extremely low pressure; this leads to heating of the precursor ion and its fragmentation, principally at the labile C-N peptide bond. This yields one series of ions extending from the C-terminus towards the N-terminus (y-ion series) and a second series of ions extending from the N-terminus towards the C-terminus (b-ion series). Since the precursor ion is usually multiply charged, the product ions often also exhibit multiply charged states (for example, for a precursor ion in the +3 charge state, product ions may be observed bearing +3, +2 or +1 charges). In addition to these ions, the neutral loss of water, ammonia and labile posttranslational modification often occurs, giving rise to additional product ions. A typical, high quality mass spectrum obtained by ESI followed by tandem mass spectrometry using CID fragmentation is illustrated in Fig. 2. It should be noted that ECD and ETD fragmentation methods can offer significant advantages in the analysis of intact proteins and their complexes and in the examination of posttranslational modifications [64], but these methods are not generally available and have not been utilized in the examination of PS II.

In a typical tandem mass spectrometry experiment, thousands of mass spectra must be analyzed using computer software. Typically, theoretical tandem mass spectra are derived from each possible peptide present in a library of target proteins. Experimental spectra are then matched to the theoretical spectra for identification. Numerous software packages are available for the identification of proteins and the location of chemical and posttranslational modifications based on mass spectrometry data. A few of these include SEQUEST [66], Mascot [67], GPMAW[68] and MassMatrix [69, 70]. Additionally, a number of programs are available to specifically examine particular types of chemical modifications, including chemical crosslinking patterns (xQUEST[71], pLink[72], Xlink[73], etc.) and oxidative modifications (ProtMapMS,[74]). In our laboratory [75-78], and several #6631], MassMatrix[69, 70] has been used to identify site-specific chemical modifications, elucidate protein crosslinking patterns and examine posttranslational modifications. This software suite can either be implemented on personal computers or using the onlineMassMatrix Server(http://www.massmatrix.net). Both types of resources have been available free of charge. The reader is encouraged to carefully examine the literature concerning the myriad software implementations for examining mass spectrometry data, as a full discussion of this topic is well beyond the scope of this review.

One of the principal challenges in using mass spectrometry for locating protein modifications is the determination of the statistical significance of a particular peptide identification. The "p-value" is the most commonly used statistic in this regard. P-values provide an estimate of the probability that the null hypothesis is correct. Within the context of a mass spectrometry experiment, the null hypothesis is that a correct peptide identification was not made using the available data and that an incorrect peptide identification occurred by chance. Consequently, a low p-value implies a low probability of an incorrect peptide identification [79]. P-values for specific peptide identifications must be chosen judiciously. For proteomics studies in which proteins are simply identified by the presence of their peptide sequence within a sample after screening large, often whole proteome libraries, a p-value of 0.05, which is the default p-value in MASCOT searches, is typically used (often with the further constraint that at least two
independent peptides be identified for a positive identification for a specific protein). When examining proteins for specific modifications, however, we feel that much more stringent criteria are appropriate. While the protein libraries being screened are usually much smaller, the number of possible modification sites is often very large. Additionally, multiple modifications may occur on the same peptide and the level of labeling at a particular site is usually highly variable, often only a few percent of the total peptide abundance. Also, unless enrichment procedures are available (for instance, the use of monomeric avidin to isolate biotinylated peptides), the yield of modified peptides may be quite low and present in a high background of unmodified peptides. When the yield of a modified peptide is low, the intensity of the observed ions may also be low and the noise level in the spectrum may become significant. While the number of putative identified modifications and/or crosslinked products will increase with higher p-values, the probability that these are correct identifications decreases.

In MassMatrix [70] peptide matches are determined by three statistical scores: pp, pp2[69], and ppagg[80]. The pp score evaluates the probability that the number of matched product ions in an experimental spectrum could be the result of a random occurrence. The pp2 score evaluates the probability that the total abundance of matched product ions in the experimental spectrum could be the result of a random occurrence. Finally, the ppagg score evaluates the number of "sequence tags" in a peptide identification; these are consecutive y- and b-ion pairs which are used to determine peptide sequences. The more sequence tags present for a particular peptide identification, the higher the probability that the peptide match is correct. All of these values are influenced by the size of the protein database being searched (the larger the database, the higher the probability of incorrect peptide identifications) and the mass search tolerances for both the precursor and product ions (the larger the mass search tolerances, the higher the probability of incorrect peptide identifications) and the overall abundance of the target peptide. Fig.3 illustrates the quality of tandem mass spectra for the same peptide at various p-values. As the p-values decrease, more of the predicted y- and b-ions and their neutral loss ion derivatives are detected. It is our view that the p-values of the peptides discussed in a paper should be provided, at the very least in the supplementary information. It is also our opinion that very rigorous p-values should be used for identification of protein modifications. In our laboratory, for large mass modifications, such as the identification of crosslinked peptides we use p-values ≤ 10^{-4}; for small modifications, such as oxidations, we use p-values ≤ 10^{-5}. It should also be pointed out that, in a particular experiment, the maximum p-value which will be considered significant for a positive peptide identification should be identified before the experiment is performed. Decoy libraries should also be examined in every experiment [81]. In these libraries the amino acid sequences for the target proteins are either in reversed order or are randomized. When searched within a mass spectrometry experiment, the results give an estimate of the number of false positive identifications within a particular data set. In MassMatrix, decoy libraries are automatically generated and searched and it is recommended that if the decoy% ≥ 2.5% for a particular protein identification, the mass search parameters be adjusted. In our laboratory the cutoff decoy% must be ≤0.0%. Finally, it is always preferable that multiple independent identifications of a particular modification feature be observed either within or across experiments, as this greatly increases the reliability of an identification.

It should also be pointed out that a variety of quantitative mass spectrometry techniques are available to examine to examine changes (either relative or absolute) in the amounts of proteins present in different biological states. These studies are beyond the scope of this review and the reader is encouraged to consult a number of excellent reviews on this topic [82, 83].
Only a few studies have used these techniques to examine structure/function relationships within PS II (for example [84-86]). It is our view that these techniques will become increasingly important in future studies of the photosystem.

1.3 Protein Modification Techniques

A variety of protein modification chemistries can be used to modify amino acid residues, yielding mass changes which can be identified by mass spectrometry [87]. These reagents allow the identification of surface-exposed domains within protein complexes. In PS II, site-specific modification has been regularly used to investigate putative binding domains for the extrinsic subunits[88-95], however, only recently has the use of these labeling reagents been coupled to the use of tandem mass spectrometry to unambiguously identify modification sites[96, 97]. Two reagents (Fig. 4) which have been commonly used to study PS II include N-hydroxysuccinimido-biotin (NHS-biotin), which modifies the ε-amino group of lysyl residues and unblocked N-termini, and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide·HCl (EDC), coupled with high concentrations of either glycine methyl ester or glycine ethyl ester, which modifies the carboxyl groups on aspartyl and glutamyl residues and C-termini. One major limitation of the use of these reagents is that they specifically modify only a limited subset of amino acid residues and consequently provide only limited information concerning exposed domains.

Radiolytic footprinting can provide a more global view of the surface-exposed features in large protein complexes [98]. This method relies on the production of ‘OH, a potent ROS species, upon exposure of water to X-rays produced by a synchrotron source. The lifetime of ‘OH in bulk water is ≈1 ns during which time it can diffuse ≈10 Å. When generated in the bulk solvent, ‘OH can modify a variety of surface-exposed amino acid residues. Fourteen amino acids are generally considered to be susceptible to such oxidative modification. The relative order of their susceptibility to oxidative modification is: Cys > Met > Trp > Tyr > Phe > His > Leu ≈ Ile > Arg > Lys ≈ Val > Ser ≈ Thr > Pro [98]. Other amino acids can be modified but with lower reactivity. The oxidatively modified residues are then identified using tandem mass spectrometry and these oxidative modifications are mapped onto the crystal structures of the subunits. Recently, this technique has been used to map the surface exposed domains on PsbP and PsbQ bound to PS II [78]. Additionally, this is a useful method to identify buried water molecules in proteins [99]. We have used this technique to identify water channels leading to the active site of PS II and putative oxygen/ROS egress pathways from the active site. [76]. It should be noted that other methods can be used to generate ‘OH for oxidative footprinting. These include Fenton chemistry [100], laser photolysis of H2O2 [101] and pulsed electron beam water radiolysis [102].

Protein crosslinking has been used extensively in earlier studies to examine subunit-subunit interactions within PS II [89, 103-113] and recently this technique has been coupled to the use of tandem mass spectrometry to identify crosslinking sites [78, 114-119]. Numerous reagents are available for protein crosslinking. These typically consist of reactive functional head group(s) at either ends of spacer arms of variable length and composition. Reaction of the head groups with amino acid R-groups (or, depending on the crosslinker, N- and C-termini) of spatially proximate amino acid residues generates a covalent bond. The length of the spacer arm provides distance constraints between the crosslinked residues. Identification of the crosslinked residues allows the derivation of flow resolution 3D structure and distance maps of the target protein or protein complex[42, 120, 121] for which crystal structures are not available.
Additionally, chemical crosslinking is useful in preserving unstable or transient structural elements that cannot be observed by X-ray and NMR methods. There are numerous commercially available protein crosslinkers with variable spacer arm length, homo- and heterobifunctional head groups, photoreactive head groups, crosslinkers which are membrane-permeable or impermeable, affinity-tagged crosslinking reagents, reagents which are cleavable by CID, etc. A full examination of the characteristics of these myriad protein crosslinkers is well beyond the scope of this review and the reader is encouraged to consult authoritative reviews on this topic [122-124].

Only a few of these reagents have been used in investigating the structure of PS II (Fig. 4). The most commonly used reagents contain N-hydroxysuccinimidyld(NHS) headgroups separated by spacer arms. Targets of these reagents include the ε amino group of lysyl residues and N-termini. Additionally, at pH 6.0 these can react with tyrosyl, seryl and threonyl residues, however, the seryl and threonyl crosslinked products are somewhat less stable [125, 126]. Disuccinimidylsuberate (DSS) contains an eight-carbon spacer arm and is hydrophobic. Typically, hydrophobic crosslinkers are dissolved in DMSO prior to use. Dithiobis(succinimidyld propionate) (DSP) is a hydrophobic, cleavable NHS ester crosslinker, with eight carbon spacer arm containing a disulfide bond. Bis(sulfosuccinimidyld)suberate (BS3, also known as Sulfo-DSS), is a hydrophilic, homobifunctional reagent containing an N-hydroxy sulfosuccinimide ester headgroup separated by an eight-carbon spacer arm and is similar to DSS. 3,3'-dithiobis(sulfosuccinimidyld propionate (DTSSP) is the sulfonated form of DSP, and is also hydrophilic. The hydrophilic crosslinkers cannot penetrate biological membranes while the hydrophobic crosslinkers can penetrate these membranes and, consequently, are useful for in vivo protein crosslinking.

EDC is a hydrophilic, zero-length, heterobifunctional, carbodiimide crosslinker, which activates carboxyl groups and subsequently reacts with primary amines with the elimination of isourea. This reagent is typically used in the pH range of 4.5 - 7.2. Only residues which are in van der Waals contact are crosslinked with this reagent. Sulfo-NHS is often added to the crosslinking reaction along with EDC, which generates a more stable reaction intermediate and yields higher crosslinking efficiencies.

Glutaraldehyde reacts with lysyl (and N-termini), tyrosyl, tryptophanyl, phenylalaninyl, histidyl, cystinyl, prolyl, seryl, glycyl and arginyl residues and is widely used for protein immobilization[127]. Numerous forms of gluteraldehyde are present in aqueous solution and its mechanism(s) of crosslinking is unclear [127]. Recently this reagent, in combination with tandem mass spectrometry, has been used in examining phycobilisome subunit interactions [119]. It should be noted that formaldehyde, which exhibits similar amino acid residue reactivity [128], has been extensively used in mapping protein-DNA interactions[129, 130] and is developing into a useful reagent for mapping protein-protein interactions [128, 131, 132], particularly for in vivo applications.

2. Case Studies

2.1 Cyanobacterial Photosystem II

2.1.1 Phycobilisome Structure and Interactions with PS I and PS II
Phycobilisomes are enormous extrinsic membrane protein complexes (>5 MDa) which are the principal light-harvesting antennae in cyanobacteria and red algae, facilitating light absorption typically in the 500-650 nm region. In cyanobacteria and red algae, the structure of phycobilisomes and the mode of interaction between the phycobilisomes and the photosystems has been the subject of much study (for reviews see [133-135]). The phycobilisome contains numerous colored proteins (α and β subunits of allophycocyanin (APC), phycocyanin (PC), and phyceroerythrin (PE), etc.) as well as numerous colorless linker polypeptides. The precise subunit composition of the phycobilisome is highly species-specific. The overall structure of phycobilisome has been studied using conventional electron microscopy and, more recently, single particle analysis [35, 136]. These studies indicate that the overall architecture of the phycobilisome contains a variable number of rod elements containing PC, PE, etc. attached to an APC core that then associates with the photosystems. The subunit-subunit interactions within the phycobilisome, however, remain quite unclear [137, 138]. While many of the individual subunits have been analyzed by X-ray crystallography, most at near atomic resolutions, the interactions between these structural elements remain poorly understood. This in large measure is due to the instability of the phycobilisome in the absence of typically very high concentrations of phosphate, which significantly complicates purification and analysis of the phycobilisome.

From a functional perspective, it had been shown using 77 K fluorescence excitation experiments, that energy trapped by the phycobilisome could be efficiently transferred to both PS II and PS I reaction centers [139]. Under conditions where all of the PS II traps were open, 90% of the excitation energy was transferred to the PS II reaction center; under conditions where the PS II traps were closed, 50% of the excitation energy was transferred to PS I reaction centers. It was unclear, however, if the excitation energy transfer to PS I was indirect, via the interior PS II chl a antennae ([140, 141], phycobilisome→PS II chl a antennae→PS I chl a antennae), direct ([142, 143], phycobilisome→PS I chl a antennae) or in-parallel ([144], PS II chl a antennae→phycobilisome→PS I chl a antennae) (for an in-depth discussion, see [135]). Interestingly, treatment of intact cells with N-ethylmaleamide disrupted energy transfer from phycobilisomes to PS I without affecting energy transfer to PS II [145] although the subunits and residues modified by this treatment were not identified. This could indicate the involvement of specific cystinyl residues in the energy transfer.

Tal et al. [119] have recently examined the subunit-subunit interactions within the isolated phycobilisome of *Thermosynechococcus vulcanus* using protein crosslinking and tandem mass spectrometry. These authors observed and mapped numerous crosslinked residues, using BS3 and gluteraldehyde, at the phycobilisome subunit interfaces. Those with the lowest p-values are illustrated in the interaction map shown in Fig. 5 and include crosslinked residues within the C-phycocyanin(αβ) trimer(CpcA-

R and CpcA:

at the phycocyanin-allophycocyanin interface(CpcA-

CpcB-

and between the linker polypeptide CpcG2 and the "minor" allophycocyanin core cylinder component ApcF (CpcG2-

and CpcG2-

The analysis of these and numerous other crosslinked species (which were identified at higher p-values), in combination with protein modeling of the subunits for which X-ray crystallographic data was not available, allowed these authors to present detailed maps of the subunit-subunit interactions within the phycobilisome complex. These results provide critically important testable hypotheses concerning the overall subunit interactions within the phycobilisome.

Recently, in *Synechocystis* 6803 Liu et al. [115] have isolated a functional supercomplex (PS II–phycobilisome–PS I) composed of PS II, PS I and the phycobilisome antennae complex.
Isolation of this complex was facilitated by in vivo crosslinking with the membrane permeant homobifunctional crosslinkers DSP and DSSP, which apparently stabilize the interactions between these three complexes, and the use of His-tagged PS II complexes [146] which allowed the isolation of the supercomplex by metal affinity chromatography. Within the PS II–phycobilisome–PS I supercomplex the stoichiometry of the individual subcomplexes appears to be 1:1:1. These authors demonstrated that the phycobilisomes were energetically coupled to both PS II and PS I and that both photosystems were activewith respect to electron transport within this supercomplex. The interaction between PS I and the phycobilisome (Fig. 6A) appears to be mediated by crosslinks between ApcB and PS I (ApcB:17K-PsaA:30K and PsaD:76K) and ApcD and PS I (ApcD:48K-PsaA:11K and ApcD:49K-PsaD:76K). A crosslink between the phycobilisome linker polypeptide CpcC2 and PsaF (CpcC2:356K-PsaF:92K) was also observed. The structural interaction between PS II subunits and the phycobilisome (Fig. 6B) appears to be mediated by the ApcE and several PS II subunits: PsbB (ApcE:87K-PsbB:227K), PsbC (ApcE:523K-PsbC:457K and ApcE:584K-PsbC:457K), PsbD (ApcE:317K-PsbD:23K) and Psl (ApcE:523K-Psbl:35K).

It is unclear from this study, however, what proportion of PS II and PS I present in vivo is actually associated with this supercomplex. It is possible that only a small proportion of the phycobilisomes are simultaneously associated with both PS II and PS I, and that the supercomplex isolated by Liu et al. [115] was a transient association trapped by the crosslinking process. It must be noted, however, that no PS II–phycobilisome or PS I–phycobilisomesupercomplexes were observed in this study. One might expect that these putative forms would also be stabilized by treatment with the crosslinker and these should have been observed if the PS II–phycobilisome–PS I supercomplex existed only transiently. Interestingly, in *Anabaena*, a novel phycobilisome–PS I supercomplex has recently been described [37] which lacks allophycocyanin and a number of linker polypeptides, but contains the linker polypeptide CpcG3 (CpcL), which was not observed in the PS II–phycobilisome–PS I supercomplex [115]. It is not known if this architecture is generally found in cyanobacteria or if it is an adaptation specific for some nitrogen-fixing strains.

2.1.2 Orange Carotenoid Protein

In cyanobacteria, under high intensity blue-green light illumination, a dark-reversible drop in the fluorescence yield of PS II is observed related to NPQ[147]. The observed fluorescence quenching is present in mutant strains which lack the PS II reaction center but contain phycobilisomes[148], however the quenching is absent in mutants which lack phycobilisomes[149] but contain PS II reaction centers. This phycobilisome-centered fluorescence quenching is termed qE_cya and mechanistically is related to the binding of a water-soluble carotenoid-containing protein, called the orange carotenoid protein (OCP), to the phycobilisome[149]. This protein, originally identified by Holt and Krogmann[150], binds the carotenoid 3′-hydroxyechinenone [151] and undergoes a reversible conformational change when exposed to blue light. The OCP° form binds weakly to phycobilisome; upon exposure to blue-green light it converts to the OCP° form, which binds to the phycobilisome and quenches fluorescence. In the dark, OCP° binds the fluorescence recovery protein (FCP), which accelerates the conversion of OCP° to OCP° (for an excellent review of the OCP, FRP and their interactions see [152]). Structures for both the OCP (PDB:3MG1[153]) and FRP (PDB:4JDX[154]) are available.
Recently, important work from the Blankenship laboratory has identified both structural rearrangements occurring in the OCP during the OCP\(^\circ\) to OCP\(^f\) transition [97, 118] and the binding location for the OCP\(^f\) form to the phycobilisome[118]. Under native electrospray ionization (nESI) conditions intact protein complexes can be examined[155]. When the dark-adapted OCP\(^\circ\) form is examined by gentle nESI, both monomer and dimer states are observed in a \(\approx 1:1\) ratio which suggests that these two forms exist in a 1:1 equilibrium in the OCP\(^\circ\) state[118], at least \textit{in vitro}. Upon blue-green light illumination, and OCP\(^\circ\) to OCP\(^f\) conversion, the monomer to dimer ratio is \(\approx 5:1\), indicating that the equilibrium has been shifted strongly to the monomeric form. After a subsequent 30 min dark incubation a monomer to dimer ratio of \(\approx 5:4\) was observed, which indicated a return to the OCP\(^\circ\) dark equilibrium state. Collision-induced dissociation and ion mobility measurements were also performed which examined the loss of 3'-hydroxyechinenone from the monomeric and dimeric states. It was found that the pigment was more resistant to dissociation in the dimeric state than the monomeric state, indicating a more open structure for the protein in the OCP\(^f\) form. Taken together, these results indicate that the active OCP\(^f\) form of the protein is the monomer. It is hypothesized that absorption of light energy by the carotenoid leads to conformational changes in the pigment that in turn elicits conformational rearrangement in the protein. These protein conformational changes then lead to the dimer \(\bigcirc\) monomer transition, with the monomer associating with the APC core subunits.

Protein crosslinking coupled with mass spectrometry has also been used to identify the interacting domains between the OCP\(^f\) form and the phycobilisome (Fig. 7), at least \textit{in vitro}[118]. Isolated phycobilisomes were incubated with OCP\(^\circ\), illuminated to produce OCP\(^f\), and the phycobilisome-OCP\(^f\) complex was isolated. This \textit{in vitro} model of the phycobilisome-OCP\(^f\) interaction had been previously well characterized [156]. The protein crosslinkers BS3 and DSS were used in these studies. As expected, no crosslinked species were observed between the OCP and the PC rod elements. Three OCP-APS crosslinked species were observed, OCP:[167]ApcB:K\(^{58}\), OCP:[249]ApcB:K\(^{26}\), and OCP:[170]ApcE:K\(^{4}\). These interactions are illustrated in Fig. 7A. The observation of these crosslinked species allowed the investigators to model the OCP-APC interaction. They hypothesize that OCP\(^f\) is associated with the basal cylinders of the allophycocyanin core, that the N-terminus of the OCP appears buried between two APC trimers (one APC\(_{660}\) and one APC\(_{680}\)), and that the C-terminus is solvent-exposed. One prediction that can be made from this model is that there maybe only two OCP\(^f\) binding sites per phycobilisome. This prediction remains to be tested. It would be very interesting if \textit{in vivo} crosslinking experiments could be performed in this system. Additionally, experiments analogous to those described above could possibly be performed with OCP\(^f\) and the FRP. One would predict that FRP might facilitate OCP dimer formation.

The conformational changes that occur during the OCP\(^\circ\) to OCP\(^f\) transition [97] have also been studied using the site-specific modification of carboxylates (Fig. 7B) with EDC and glycine ethyl ester hydrochloride (GEE). At high concentrations of GEE, the carboxylate-labeling reaction is much more favorable than the protein crosslinking reaction of EDC, alone. These investigators examined three different light conditions, darkness (OCP\(^\circ\)), continuous light (OCP\(^f\)) and intermittent light (mixture of OCP\(^\circ\) + OCP\(^f\)). In general, the labeling pattern of the OCP under intermittent light was intermediate between that observed under darkness and constant illumination. Interestingly, carboxylate modification of OCP under illumination stabilizes the OCP\(^f\) form and prevents recovery of the OCP\(^\circ\) form in the dark, at least in the absence of the FRP. It appears that modification of particular residues in the OCP\(^f\) state prevents the monomer \(\bigcirc\) dimer dark transition. Two groups of residues were identified which exhibited differential
labeling (Fig. 7B). One group exhibited increased labeling in the OCP\textalpha state. These residues were located at the interface of the N- and C-terminal domains of the protein (19D, 17E and 24E) and at the \(\beta\)-sheet core which, in the crystal structure, interacts with the N-terminus of the protein (\(\beta\)-D, 258E, 281E, 262E, 307D and 311D). The labeling of these residues indicates that these portions of the OCP exhibit greater solvent exposure in the OCP\textalpha state. A second group of residues exhibited decreased labeling in the OCP\textalpha state (65E, 115E and 118E) and consequently, less solvent exposure. While the labeling features of some of these residues appear consistent with the dimeric crystal structures and the hypothesis that the OCP\textalpha form is monomeric (for instance the increased labeling of 6D and 19D), the labeling features of the other residues are more difficult to explain and clearly require further study.

Recently, solvent accessibility changes upon the OCP\beta to OCP\textalpha conversion have been examined by radiolytic footprinting [157]. Residues near the N-terminus, \(41W\), \(42F\), \(44Y\) and \(47M\), exhibited decreased solvent exposure upon conversion to the OCP\textalpha form. Residues near the C-terminus, \(276P\), \(277W\), \(279F\) and \(283M\), exhibited increased solvent exposure. Overall, the increase in solvent accessibility of the C-terminal domain and decrease in accessibility of the N-terminal domain appear quite consistent in both the radiolytic and chemical [97] footprinting experiments (Fig. 7B).

2.1.3 Location of CyanoQ within Cyanobacterial PS II

Cyanobacteria (and red algae) contain homologues of the higher plant PS II subunits PsbP and PsbQ [50, 158]. These proteins, CyanoP and CyanoQ, however are not present in any cyanobacterial crystal structure available. While the constitutive association of CyanoP with cyanobacterial PS II and its function is controversial [159-161], CyanoQ is a constitutive subunit of cyanobacterial PS II [162] which is lost during crystallization [161]. CyanoQ may also serve as an assembly factor, as multiple copies of CyanoQ are present in a late cyanobacterial PS II assembly complex [163].

The interaction of CyanoQ with other cyanobacterial PS II subunits and apoprotein structural organization for this component within the complex has recently been presented by Liu et al. [117]. In these studies, the crosslinkers EDC, DTSSP and BS3 were used to modify PS II which had been isolated by metal affinity chromatography (via introduction of a polyhistidine tag on the C-terminus of CyanoQ [162]). A number of inter- and intraprotein crosslinked products were observed (Fig. 8A). CyanoQ was found to be crosslinked to both PsbO (CyanoQ:120K-PsbO:180K and CyanoQ:120K-PsbO:59K) using DTSSP (or BS3) and PsbB (CyanoQ:102K-PsbB:440D) using EDC. The identification of these crosslinked products allowed placement of CyanoQ adjacent to both PsbO and PsbB. Interestingly, two types of intraprotein crosslinked products were observed involving CyanoQ. Some of these were fully consistent with the observed crystal structure of CyanoQ(CyanoQ:96K-CyanoQ:100K, CyanoQ:100K-CyanoQ:106K, and CyanoQ:102K-CyanoQ:106K). One, however, cannot be explained within the monomeric CyanoQ structure. This crosslinked product CyanoQ:96K- CyanoQ:120K spans a distance of 41 Å, as these residues lie on opposite ends of a long \(\alpha\)-helix. Either an unprecedented conformational change must occur upon binding of CyanoQ to the photosystem, bringing these residues in close proximity, or the observed crosslink occurs between two different molecules of CyanoQ which associate as asymmetrical, antiparallel dimer (Fig. 8B). The authors proposed a model for the interaction of the dimeric CyanoQ with cyanobacterial PS II in which a CyanoQ dimer (one from each PS II monomer) associates with the luminal face of the
cyano bacterial PS II dimer, with each copy of CyanoQ associating with both PsbO and CP 47 within each monomer.

2.2 Higher Plant and Green Algal Photosystem II

2.2.1 Location of PsbP and PsbQ in Photosystem II

One persistent problem in the study of higher plant PS II has been the absence of structural information concerning the location of PsbP and PsbQ. These components provide critical support for oxygen evolution by maintaining the association of the essential inorganic cofactors calcium and chloride with the photosystem at physiological ion concentrations [50]. It has also been suggested that PsbP may act to supply manganese to the photosystem during metal cluster assembly [24, 164, 165]. Earlier, cryoelectron microscopy and single particle analysis were used to address this problem [30]. In that study, the X-ray structure of spinach LHCII and the cyanobacterial PSII crystal structure were overlaid onto a 17 Å projection map for PSII-LHCII from spinach [166]. This analysis indicated that PsbP interacts with PsbO and may be located adjacent to CP43 and that PsbQ bridges the PsbO and PsbP proteins.

Nagao et al. [113] used EDC crosslinking and MALDI-TOF mass spectrometry to examine the interaction of the extrinsic proteins with Chlamydomonas PS II. This study was the first to indicate that PsbP was in van der Waals contact with PsbE, the α-subunit of cyt b559. The authors, however, could not identify the site of this interaction due to the lack of fragmentation information in their experiments. Ido et al. [167] resolved this question using tandem mass spectrometry and EDC crosslinking of spinach PS II membranes. In these experiments the crosslinked residues PsbP:1A-PsbE:57E were clearly identified in multiple independent spectra.

Recently, Ido et al. [116] used protein crosslinking and tandem mass spectrometry to further examine the location of PsbP and PsbQ in spinach PS II membranes. In this study, the authors used biotin-labeled PsbP and PsbQ proteins that were reconstituted with salt-washed PS II membranes prior to crosslinking with EDC. This allowed the affinity isolation of crosslinked products which contained either biotin-PsbP or biotin-PsbQ. The authors immunologically identified crosslinked products which contained biotin-PsbP in independent association with PsbE, PsbR, CP 43, and CP 26 and were able to map the crosslinked residues. Immunologically identified crosslinked products between biotin-PsbQ and CP 43 and CP 26 were also identified, however, the participating crosslinked residues could not be determined. After cleavage with trypsin or chymotrypsin, tandem mass spectrometry was able to identify the crosslinked residues for a subset of these associations (Fig. 9A). The interaction of PsbP:1A-PsbE:57E, which had been described earlier [167], was verified. Additionally, the locations of novel crosslinking sites were determined. A crosslink interaction between PsbP:27K-PsbR:22D was identified. A novel tertiary crosslinked product involving two PsbP peptides and a single CP 26 peptide was also observed (PsbP:115E-PsbP:172K → PsbP:174K-CP 26:50E). These results indicated that PsbP is in van der Waals contact with PsbE, PsbR and CP 26. A model was presented in which PsbP, PsbQ and PsbR are all associated with the periphery of the PS II complex near the membrane surface with PsbR adjacent to PsbE, PsbP adjacent to PsbR and PsbQ adjacent to PsbP and also associated with CP 43. In this model, the association of PsbP:1A with PsbE:57E requires that the N-terminus of PsbP be highly extended since PsbR occupies a position between PsbP and PsbE within the complex. It had earlier been demonstrated that the N-terminal 19 amino acids of PsbP were critical for stable binding and promotion of oxygen evolution activity ([168, 169]; for a
review of the structural and functional characteristics of PsbP, see [50, 158]). This important domain on PsbP, however, is not resolved in the available crystal structures [23, 24, 170]. Additionally, while PsbP and PsbQ were proposed to directly interact, neither protein is in direct contact with PsbO; both, however, appear to interact with CP 26.

Our laboratory also has examined these interactions using tandem mass spectrometry and the protein crosslinker BS3. Additionally, radiolytic footprinting was used to examine the domains on these proteins exposed to the bulk solvent [78]. In this study we used the homobifunctional crosslinker BS3 which crosslinks lysyl residues, free N-termini and, at low pH, tyrosyl residues [120, 171, 172] which are within 11.4 Å. The crosslinked products were analyzed by tandem mass spectrometry. Critically, with respect to the Ido et al. model [116], we identified nine independent crosslinked products indicating that the N-terminal domain (141-402) and C-terminal domain (170-186) were closely associated. These interactions could not be identified when unbound PsbP was exposed to BS3 in solution. These crosslinks placed strong distance constraints on the N- and C-termini and allowed us to model the N-terminus of PS II-bound PsbP as a very compact structure which does not contain a long N-terminal extension. These findings help explain the observation that the N- and C-terminal domains cooperate in facilitating PsbP function in support of PS II activity [167]. Additionally, we identified two independent crosslinked products between PsbP and PsbQ (PsbP:39K and PsbP:93Y were crosslinked to PsbQ:14E, Fig. 9A). PsbP:39K and PsbP:93Y both are located in a long, apparently mobile loop which was not resolved in the crystal structures available at the time of publication. Recently, Cao et al. [24] demonstrated that in the presence of bound manganese, this loop assumed a stable structure which is consistent with our observed crosslinking interactions (Fig. 9B). We also observed two independent crosslinked products which indicated that PsbQ can form dimers when bound to the photosystem. PsbQ:98K and PsbQ:101K can both be crosslinked to PsbQ:133Y. These crosslinked residues are separated by 30 Å and consequently could not be crosslinked using BS3 within the monomeric protein. This is highly reminiscent of the finding in cyanobacterial PS II that CyanoQ is present as an antiparallel homodimer [117], although the dimer we observed is not fully symmetric (Fig. 9C). Finally, we used radiolytic oxidative labeling to identify surface-exposed residues on PS II-bound PsbP and PsbQ. These results were consistent with earlier reports using site-specific chemical modification techniques [93-95]. Additionally, we identified a domain on PsbP that was shielded from oxidative modification and which was adjacent to the PsbP-PsbR binding site (PsbP:27K-PsbR:22D) identified by Ido et al. [116]. This may define the surface interaction between these two subunits. Recently, Ifuku [173] has integrated these new findings into an updated model for the interaction of PsbP and PsbQ with higher plant PS II.

2.2.2 Experimental Identification of Putative Water and Oxygen Channels within PS II

Since the Mn4O5Ca oxygen-evolving site is buried within the protein matrix, channels which can transit substrate water to the metal cluster and which can vector product oxygen and protons away from the active site are necessary. A number of possible water/oxygen/proton channels within the photosystem have been proposed (for an excellent review see, [174]). These hypotheses have been based largely on computational studies using CAVER analysis [175], surface contact area analysis [176], or water streamline tracing coupled with molecular dynamic simulations [177, 178]. Briefly, at least four channels have been identified computationally as leading from the lumenal surface of PS II to the Mn4O5Ca cluster. These have been designated [174]: 1. "Back Channel", which was proposed to transport either oxygen [179] or water [176,
180], 2. "Narrow Channel", which may transport protons [176, 180], 3. "Broad Channel", was hypothesized to transport water and/or protons [176, 179, 180], and 4. "Large Channel", which was proposed to transport water and/or protons [179] or possibly oxygen [176, 180]. Limitations exist, however, with all of these largely computational studies which examine static crystal structures [176, 179, 180]; they fail to take into account molecular motion on the ns time scales which could substantially alter the overall shape and dimensions of the identified water channels within PS II. It should be noted that Vassiliev et al. [177, 178] have partially addressed this problem using molecular dynamic simulations of water movement within the photosystem. It has also been implicitly assumed in these studies that no conformational changes occur in the PS II structure during normal S-state transitions which could affect water transport to the active site or oxygen/protons away from the active site. It has been noted that even a modest conformational change involving one or a few amino acid residues could hypothetically either open or close putative water/oxygen/proton channels during S-state cycling [178].

In our laboratory, we hypothesized that the water present in channels leading to or possibly from the active site would be susceptible to radiolytic footprinting and we have used this technique to identify buried amino acid residues associated with such channels[76]. In this experiment, spinach PS II membranes were exposed for various lengths of time (0-16 s) to synchrotron radiation. After irradiation, the samples were resolved by non-oxidizing LiDS-PAGE and a subset of proteins (D1, D2, CP 43 and CP47) were isolated, digested with trypsin and analyzed by tandem mass spectrometry. MassMatrix [69, 70] was used to identify oxidatively modified residues and these were mapped onto the cyanobacterial PS II structure [6]. This analysis is feasible due to the strong predicted sequence and structural similarity of these proteins in the cyanobacterial and higher plant systems.

As expected, numerous surface residues on these PS II subunits were oxidatively modified. Additionally, a large number of modified buried residues were observed over the experimental time-course. These modified residues fell into two groups (Fig. 10). The first group (Fig. 10A) was composed of numerous residues found in D1, D2 and CP 47 (D1 residues 331M, 332H, 333E and 334R; D2 residues 323E and 326R, and CP47 residues 359M, 363F, 364E, 365S, 425I and 426F). The residues modified by irradiation formed a near continuous group of residues leading from the surface of the complex to the manganese cluster. Comparison of these residues with those found in Channels 1-4 (described above) indicated that 55% of the residues explicitly identified as forming the "Broad Channel" [174] exhibited oxidative modification; in the other channels 20-30% of the residues were modified. These experimental observations strongly support the hypothesis that the "Broad Channel" is a major source of substrate water supplying the active site of PS II. A second group (Fig. 10B) of buried residues was found solely on CP 43. This group includes the oxidized residues 354E, 355T, 356M and 357R, which were observed to be oxidized in the absence of irradiation, and which had previously been hypothesized to form part of an oxygen/ROS exit pathway from the manganese cluster to the surface of the photosystem (see section 2.2.4, [75]), and the residues 343R, 348E, 361F, 366L, and 363G, which were modified by irradiation. These residues also form a near contiguous pathway leading from the Mn₄O₅Ca cluster to the luminal space. No computationally identified channels have been proposed in this domain of CP43. Many of these residues, however, are in contact with noncontiguous cavities that are present in CP43 and at the CP43-PsbO interface. It is possible that these residues constitute a previously unidentified water pathway within the PS II complex, particularly if conformational changes occur in this region during S-state cycling. An alternative hypothesis is that these modified CP 43 residues are adjacent to a pathway for oxygen and/or
ROS egress from the active site. These and other possible hypotheses cannot be differentiated at this time.

2.2.3 Identification of Posttranslational Modifications in PS II- Phosphorylation

The earliest identification of posttranslational modifications of PS II using mass spectrometry was the identification of the phosphorylation sites on D1, D2 and CP43 by John Bennet’s laboratory in 1988 [181]. Earlier, using the Edman degradation technique, this laboratory had demonstrated that PsbH was N-terminally phosphorylated, however the N-termini of D1, D2 and CP43 were blocked[182]. To identify the phosphorylation sites on these three components, the authors used techniques which are still routinely in use 27 years later. After tryptic digestion the phosphorylated peptides were isolated by metal affinity chromatography, the peptides were resolved by HPLC on reversed phase columns, and analyzed on both triple quadrupole (using CID fragmentation) and tandem quadrupole (using laser photodissociation) Fourier transform mass spectrometers. D1 and D2 were both phosphorylated on N-acetyl-2Thr while CP 43 was phosphorylated on N-acetyl-15Thr. Thus, four different types of posttranslational modifications were observed in these proteins: removal of the N-formylmethionyl residue encoded by the initiation codon, removal of an additional thirteen N-terminal residues in the case of CP 43, N-terminal acetylation of the processed proteins, and phosphorylation of the N-terminal threonyl residues. Subsequent studies, using similar methodologies, identified the phosphorylation sites of the LHC proteins in Arabidopsis thaliana (henceforth, Arabidopsis)[183, 184] and Chlamydomonas reinhardtii (henceforth Chlamydomonas)[185], an additional phosphorylation site on PsbH (T, [183]), and demonstrated that PsbR was a phosphorylation target, at leastin Chlamydomonas (15S of the mature protein, [185]). These studies proved the general utility of these techniques. For authoritative reviews on the environmentally regulated reversible phosphorylation of PS II subunits, the reader should consult [186-188].

Additionally, the extrinsic proteins PsbP and PsbQ may be phosphorylated. While no phosphorylation of these subunits has been reported using standard radiolabeling procedures in any system, two Arabidopsis global phosphoproteomic studies have identified putative phosphorylated peptides from these components after metal affinity chromatography or TiO2 enrichment for phosphopeptides[189, 190]. Both PsbP-1 and PsbP-2 were reported to contain multiple phosphorylation sites (T, T68, T70 and S82). No phosphorylated peptides were identified for PsbQ-1. However, phosphorylation of the PsbQ-2 protein at S91 was reported. PsbP and PsbQ phosphorylation was detected under both dark and light incubation conditions. Earlier, the Chlamydomonas PsbQ protein had been identified in a phosphoproteomic study [191] as being phosphorylated at three sites, T117, S120, and T121. The protein kinases and phosphatases associated with the putative phosphorylation on these extrinsic subunits have not been identified and the biological role played by the phosphorylation remains undetermined.

2.2.4 Oxidative modifications

PS II is the major site of photoinhibition in all oxygenic organisms and appears particularly susceptible to damage by ROS [53, 54]. Briefly, it is hypothesized that ROS production at an unidentified site or sites within the photosystem leads to oxidative modification of largely unidentified amino acid residues within the complex. This damage affects structure and function within PS II and initiates a signal transduction pathway which leads to the migration
of the damaged complex to the stroma thylakoids, partial disassembly of the complex, removal and replacement of the D1 protein with subsequent reassembly and migration of the fully repaired functional complex to the grana thylakoids. These processes require multiple repair and assembly factors which interact with PS II in a highly orchestrated manner [192]. For extensive reviews on this complex topic, the reader should consult [193-195] and for an alternative viewpoint, see [196, 197]. So, where are the sites of ROS production in PS II? The production of molecular oxygen by PS II is accompanied by the unavoidable possibility of oxidative modification of amino acid residues within the PS II complex in the vicinity of the $\text{Mn}_4\text{O}_5\text{Ca}$ metal cluster [53, 54]. Damaged manganese clusters may also contribute to ROS production by releasing partially oxidized water species ($\text{O}_2^*, \text{H}_2\text{O}_2, ^*\text{OH}$). Singlet oxygen ($\text{O}_2^*$) produced at P_{580}, the primary electron donor of the photosystem, has also been proposed as a source of ROS generated by the photosystem [198-200]. Additionally, reductants produced by PS II, such as Q_B^2 [201], Pheo_{D1} [202], Q_A [203], and, possibly, reduced low potential cytochrome b_{559} [204, 205], appear to have redox potentials and lifetimes sufficient to partially reduce molecular oxygen, producing O_2^*, H_2O_2, and/or $^*\text{OH}$. These sites have been hypothesized to be sources of ROS on the reducing side of the photosystem. Little progress has been made, however, in determining the relative importance of these multiple putative ROS production sites and only recently has a subset of oxidatively modified residues been identified. It is unclear which, if any, of the modified residues trigger PS II turnover and repair.

We have hypothesized that amino acid residues in the vicinity of the sites of ROS production would be particularly susceptible to ROS modification [75, 77]. The identification of such oxidatively modified residues in PS II should serve to identify both the sites of ROS generation, their relative importance in the photoinhibitory process and, possibly, help define the putative paths for ROS exit from PS II. Recently, the use of mass spectrometry has provided the first insights into the location of oxidatively modified residues within PS II. If our hypothesis is correct, then the identification of these residues suggests sites within the photosystem producing ROS. It should be noted, however, that the type of ROS which is responsible for a particular oxidative modification cannot be readily determined by mass spectrometry, alone.

In an early mass spectrometry study, Sharma et al. [206] identified six peptides on D1 and four peptides on D2 which contained oxidative modifications, some of which bore multiple oxidative modifications. While they identified the location of these peptides within the proposed structures at that time of D1 and D2, they could not identify the modified residues within these peptides due to the lack of CID information. We have recently confirmed and extended this observation using CID fragmentation and identified several natively oxidized amino acid residues (D1: ^{130}E, ^{133}L and ^{155}F) in close proximity to Pheo_{D1} [77]. $\text{D1}:^{130}\text{E}$ is in van der Waals contact with the pheophytin and the other residues are within 13.8 Å. Additionally, other natively oxidized residues (D1: ^{239}F, ^{241}Q, ^{242}E and D2: ^{238}P, ^{239}T, ^{242}E and ^{247}M) were in close proximity with Q_A [77]. D2: ^{247}M is located 3.7 Å from the quinone and the other residues are within 13.5 Å (all measurements using the Umena PS II structure [6] as a model). These natively modified residues are illustrated in Fig. 11. These findings support the hypothesis that Pheo_{D1} and Q_A could serve as sources of ROS on the reducing side of PS II. It should be emphasized, however, that these residues were identified in PS II isolated from field grown spinach. Consequently, the rate of production of these oxidative modifications and their possible role in the photoinhibitory process is unknown at this time.

On the oxidizing side of the photosystem, a number of oxidatively modified residues have been identified using tandem mass spectrometry. The Barry laboratory has been at the forefront...
of this research [207, 208]. N-formykyurenine (NFK) is an oxidative modification of tryptophan which appears, in at least some systems, to be involved in the response to oxidative stress [209] and is a marker for high light stress in plants [207]. Conversion of tryptophan to NFK involves a double oxidation event which leads to ring opening and an expected mass change of +32 Da. The ROS species responsible for NFK formation include O$_2^*$ [210] and 1OH[211], both of which have been implicated in photoinhibition (see above). A number of tryptophanyl residues oxidatively modified to NFK have been identified in PS II and the presence of some of these is directly correlated to photoinhibition. Dreaden et al. [207] presented compelling evidence that CP 43:354W was modified to NFK. The presence of NFK was verified using UV-Vis spectroscopy, UV resonance Raman spectroscopy and tandem mass spectrometry. Photoinhibition experiments performed on PS II membranes indicated that the loss of oxygen evolution capability very closely tracked the appearance of increasing amounts of NFK: a 2.4 ± 0.5-fold decrease in oxygen evolution capacity and a 2.4 ± 0.8-fold increase in NFK during photoinhibition. CP 43:365W is located 17 Å from the Mn$_{5}$O$_{5}$Ca oxygen-evolving site (Fig. 11). Other tryptophanyl residues are also located in the vicinity of the metal cluster. CP43:359W, CP 43:291W and D2:328W are all located within a 16 Å sphere surrounding the metal cluster, but were not observed to be oxidatively modified. This may indicate some specificity with regard to CP 43:365W modification. Earlier, this laboratory had reported that site-directed mutations introduced at the analogous site in Synechocystis6803 (CP43:352W) yielded mutants which did not exhibit defects in oxygen evolution but which were much more susceptible to photoinhibition[212].

Interestingly, very modest increases in the ionic strength of the buffer present during photoinhibition leads to the loss of NFK formation at CP 43:365W and the appearance of a new NFK modification at D1:317W[208]. This residue is also located in close proximity (14 Å) to the Mn$_{5}$O$_{5}$Ca metal cluster (Fig. 11). The authors hypothesized that ionic changes (possibly Mg$^{2+}$) in the thylakoid membranes occurring in response to illumination may trigger alteration in the oxidative modification pattern observed for these residues.

In our laboratory, we have also used tandem mass spectrometry to examine oxidative modifications in the vicinity of the Mn$_{5}$O$_{5}$Ca oxygen-evolving site [50]. A group of oxidized CP 43 residues (354E, 355T, 356M and 358R) which are located in close proximity (≤10 Å) to the manganese cluster were identified to be natively oxidized in PS II membranes which had been isolated from field spinach. CP 43:354E is a bidentate, first shell ligand to Mn2 and Mn3, while CP 43:357R is a second sphere ligand associated with O2 and O4 of the manganese cluster [6]. While this study identifies the manganese cluster as being a probable source of ROS, it does not provide information as to its importance in ROS production in the photoinhibition process. It has been hypothesized that these four CP 43 residues may be associated with an oxygen/ROS egress channel (Fig. 11) on the oxidizing side of the photosystem [75].

Using MALDI-TOF, tandem mass spectrometry and X-ray crystallography, Sugiura et al. [213] demonstrated that D2:336H (Fig. 13) was oxidatively modified in Thermosynechococcus. Examination of the electron density maps from Thermosynechococcus [6] indicated that a significant electron density anomaly was located adjacent to D2:336H in both PS II monomers (Fig. 11). This modification was consistent with the possible oxidative modification of this residue. Such modification could be the result of posttranslational modification or an artifact due to ROS produced by the X-ray beam. To distinguish between these two possibilities, the authors isolated the D2 protein after SDS-PAGE of PS II core complexes which had never been exposed to X-rays, performed in situ trypsin digestion and analyzed the proteolytic fragments by mass
spectrometry. These experiments verified that D2:\^{336}H was posttranslationally oxidatively modified and that about 20-30% of the D2 proteins carry this modification.

3. Some Future Directions

3.3.1 Mapping of components within assembly complexes

PS II consists of numerous subunits and cofactors which must be assembled in a precisely orchestrated sequence of molecular events[52]. This process involves the participation of assembly factors that facilitate and coordinate the sequential addition of structural subunits (and pigments/cofactors), forming transiently quasi-stable assembly complexes. These assembly complexes are usually present in very low concentrations within the photosynthetic membrane, precluding their isolation in sufficient quantities for protein crystallization. Consequently, other methods are required to examine and identify the protein-protein interactions within such assembly complexes, particularly in regard to the possible interactions of the assembly factors with each other and their interaction(s) with the structural components of the photosynthetic complexes.

The use of mass spectrometry coupled with protein crosslinking and/or protein footprinting holds great promise for identifying protein-protein interactions within assembly complexes. Such experiments in conjunction with (1) X-ray crystallographic and/or NMR structural examination of assembly factors which have been expressed heterologously, and (2) protein modeling of the interacting domains between assembly factors and their associated structural subunits, may provide a glimpse of the structural organization of assembly complexes. In this regard the crystal and/or NMR structures of several assembly factors associated with cyanobacterial PS II are known (Psb27[25, 214], CyanoP [21, 22] and Ycf48/Hcf136 [27]) and Psb28 [215].

A first example of this approach is the examination of the association of the assembly factor Psb27 with cyanobacterial PS II [114]. Psb27 facilitates the assembly of the manganese cluster in PS II [216], participates in PS II repair [217], and had been shown to be associated with PS II complexes which partially assemble in the absence of the C-terminal D1 processing enzyme ctpA[218]. The interaction of Psb27 with PS II assembly intermediates has been examined in *Synechocystis* 6803 PS II using protein crosslinking and mass spectrometry[114]. Using the protein crosslinkers EDC (0-length) and DTSSP (12Å), these authors determined that Psb27 interacted directly with CP 43(Fig. 12A). EDC crosslinking coupled with tandem mass spectrometry identified salt bridges between Psb27:58D and CP 43:215K and Psb27:63K and CP 43:321D. Interestingly, the distance between CP43:215K and CP43:321D in mature PS II (32.8Å) is greater than the distance between Psb27:58D and Psb27:63K (11.3Å -19.8Å) in the NMR structures of Psb27 [25, 214]. This indicates that either Psb27 or PS II undergoes a 12.5-21.5Å conformational change when associated in an assembly complex or that two different locations are present for Psb27 binding to CP 43, one adjacent to CP43:215K and the other adjacent to CP43:321D. These possibilities cannot be distinguished at this time.

These investigators also used site-specific labeling techniques of carboxylates to further refine their analysis of the interaction of Psb27 within the PS II assembly complex [96]. They found that the interacting domain of CP 43 with Psb27 included the residues CP 43:367E, 376E, 378E, and 381E (Fig. 12B). Binding of Psb27 to this domain may prevent binding of PsbO and PsbV to this assembly complex.
Although these studies are quite promising several caveats must be considered in these types of experiments. First is the assumption that the molecular organization of the structural protein subunits in an assembly complex approximates that which is observed for these subunits in the mature membrane protein complex being modeled. This may or may not be the case. Similarly, the bound structure of an assembly factor may be different from its solution structure. A careful analysis of crosslinked/modified species involving only the structural subunits and only the assembly factor in control experiments may reveal structural alterations in the subunit/assembly factor which are specific for assembly complexes, only.

3.3.2 \textit{In vivo and in organello} protein crosslinking

Clearly, an ultimate goal of structural biology is understanding the \textit{in vivo} structure of membrane protein complexes. As noted in the introduction, this is difficult to accomplish using only the traditional tools of X-ray crystallography. \textit{In vivo} and \textit{in organello} protein crosslinking promise to provide critical supplementary information bearing on subunit topology and makeup, functional architecture and protein complex interactions [219]. A number of protein crosslinkers are hydrophobic and consequently have the ability to cross biological membranes. These can crosslink protein components \textit{in vivo} or \textit{in organello}. These include formaldehyde (2 Å spacer), the homobifunctional crosslinker DTSP, the heterobifunctional photoactivatable crosslinkers succinimidyl 4,4'-azipentanoate (NHS-diazirine, 3.9 Å spacer arm) and succinimidyl 2-((4,4'-azipentanamido)ethyl)-1,3'-dithiopropionate (NHS-SS-diazirine, 13.5 Å spacer arm), and others. \textit{In vivo} crosslinking appears to be particularly attractive in the identification of transient protein-protein interactions occurring in photosynthetic membranes upon changing environmental conditions. These include state transitions, high light or temperature photoinhibition, diurnal cycling, anaerobiosis, nutrient limitation, etc. All of these conditions have been reported to influence the photosynthetic apparatus; however, elucidation of the molecular mechanisms involved is hampered by the necessity to isolate photosynthetic membranes prior to the analysis of the photosynthetic complexes. It is likely that many, if not most, transient protein-protein interactions may not survive this isolation procedure. Additionally, it must be pointed out that our current knowledge of the structural components associated with the photosynthetic membrane protein complexes is based almost entirely on detergent-isolated complexes. It is formally possible that structural components of these complexes may be present under native conditions but are lost during the crystallization process. This is known to occur during isolation and crystallization of cyanobacterial PS II. The CyanoQ component is lost [17, 162] and does not appear in the current crystal structures [6, 7]. Possible reasons for the loss of subunits include release at the detergent concentrations used during solubilization of the photosynthetic membrane, loss during purification, the ionic make-up of the crystallization liquor (usually very different from \textit{in vivo} conditions), sensitivity to required crystallization conditions (pH, metal additives, amphiphilic additives, etc.), steric hindrance either within detergent micelles or in the crystal matrix, etc.

In either application the use of \textit{in vivo} or \textit{in organello} protein crosslinking “freezes” the protein-protein interaction so that the association of the interacting partners survives the isolation and subsequent analysis steps. In this regard it should be noted that \textit{in vivo} protein-DNA crosslinking with formaldehyde is a well established procedure in the examination of chromatin structure [220, 221]. Interestingly, \textit{in vitro}, even at very high concentration of bovine serum albumin (50 mg/ml, which approximates \textit{in vivo} protein concentrations) BSA was not observed
to be crosslinked artifactualy to DNA with formaldehyde[220]. This observation supports the hypothesis that, in large measure, formaldehyde identifies specific protein-DNA interactions. This may also indicate low levels of artifactual protein-protein crosslinking in vivo. One recent example of the use of in vivo formaldehyde crosslinking is examination of the association of the Rubisco Accumulation Factor 1 (RAF1) with the large subunit of Rubisco[222]. RAF1 is required for Rubisco accumulation. In the absence of RAF1, Rubisco transcription and translation are not affected but Rubisco fails to accumulate, which suggests that RAF1 is a chaperonin for Rubisco. After in vivo crosslinking followed by BN-gel electrophoresis, a 750 kDa complex was identified which contained both RAF1 and the large subunit of Rubisco. After immunoprecipitation with an anti-RAF1 antibody, SDS-PAGE analysis identified a specific crosslinked product containing the large subunit of Rubisco and RAF1. Mass spectrometry could be used to identify other proteins possibly present in the 750 kDa native complex and possibly the site of interaction between the large subunit of Rubisco and RAF1.

Another possible approach for in vivo protein crosslinking is the metabolic incorporation of noncanonical amino acid analogues which act as photoactivatable protein crosslinkers. Two reagents, L-Photo-leucine and L-Photo-methionine are commercially available (Pierce Chemical Co.). Both of these reagents contain diazirine functional groups which are activated by exposure to 365 nm ultraviolet light. Optimally, metabolic incorporation requires the use of leucine or methionine auxotrophs which, at this time, would appear to limit their use to cyanobacterial or other bacterial systems. No verified leucine or methionine auxotrophs have been isolated in Chlamydomonas (Chlamydomonas Sourcebook). In this regard, methionine auxotrophs have been reported for Synechococcus sp. 6301 [223], Anabaena variabilis[224] and Synechococcus 7942 [225], while a leucine auxotroph has been reported for Synechocystis 6803 [226]. This latter mutant was the result of an insertion in the sodB gene (encoding superoxide dismutase) that induced a polar effect on the downstream leuB gene.

It should be noted that in higher plants, a number of herbicides inhibit ketol acid reductoisomerase (acetohydroxyacid synthase, EC 1.1.1.86), which is the second common step in branched chain amino acid biosynthesis. These inhibitors include N-isopropyl oxalylhydroxamate (IpOHA), 2-dimethylphosphinoyl-2-hydroxyacetic acid (HOE 704) and CPCA (1,1-cyclopropanedicarboxylic acid). In Arabidopsis, 10 ppm HOE 704 completely inhibits growth. Interestingly, the effect of the herbicide can be largely reversed by supplementation of the growth medium with 0.5 mM each of valine, leucine and isoleucine[227, 228]. This observation raises the intriguing possibility that L-photo-leucine could be incorporated into higher plants in the presence of these inhibitors. Given that the branched chain amino acid biosynthetic pathway appears to be highly conserved (all of these inhibitors also inhibit the E. coli enzyme), incorporation of L-Photo-leucine into Chlamydomonas, cyanobacteria and other plant model systems by this proposed method may also be possible.

4. Conclusion

The use of tandem mass spectrometry in combination with protein modification methodology to examine PS II is still in its infancy. The explosion of studies using these techniques over the last five years indicates that these methods will become increasingly important in the examination of PS II structure and function. Even at this early stage, substantial contributions have been made in the understanding of subunit-subunit interactions within the phycobilisome antennae, the structure and mechanism of cyanobacterial OCP, the locations of the important extrinsic subunits
(CyanoQ, PsbP and PsbQ), the identification of buried water and possibly, oxygen/ROS pathways, and the identification of posttranslational modifications within the photosystem. Particularly promising is the possibility that exploitation of in vivo chemical modification methodologies will allow the identification and structural examination of assembly/repair complexes and other transient complexes present during environmental changes. We look forward to additional findings on these topics and others that will undoubtedly be forthcoming in the near future.

Acknowledgments:

This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through grant DE-FG02-98ER20310 to T.M. Band L.K. F. Special thanks are given to Annette Hebert for her critical reading of the manuscript.
Figure Legends

Figure 1. PS II. Shown is the 1.9 Å crystal structure of the PS II dimer from the thermophilic cyanobacterium Thermosynechococcus vulcanus[6]. A. View of the complex from within the plane of the membrane. B. View of the luminal face of the complex. D1, yellow; D2, pale yellow; PsbI, orange; PsbE, red; CP 43, dark green; CP 47, light green; PsbO, blue; PsbU, pale blue; PsbV, purple; all other subunits are illustrated in grey.

Figure 2. High Quality Tandem Mass Spectrometry Result for the Tryptic Peptide PsbO:81L-101K. Upper Panel, mass spectrum of peptide. Within the peptide sequence shown, red letters indicate identification of residues in both consecutive y- and b-ions; green letters, residues identified in consecutive y-ions; blue letters, residues identified in consecutive b-ions, and black letters, residues not identified. This precursor peptide was observed as a triply charged ion and had a predicted mass of 2300.1180 Da and an observed mass of 2300.1139 Da, with a consequent mass accuracy of 1.7 ppm and a p-value of 10^{-21}. Lower Panel, table of predicted product ions from this amino acid sequence of this peptide. Ions which were detected are shown in red. A continuous y-ion series was observed from y3 to y19 and a continuous b-ion series was observed from b4 to b20. y* and b*, neutral loss of ammonia; y’ and b’, neutral loss of water.

Figure 3. Peptide Identification at Various p-Values for the Tryptic Peptide PsbO:6L-14K. Shown is the mass spectrum obtained for the this peptide at various p-values. There are three p-values illustrated, p = 10^{-8}, upper panel; p = 10^{-4}, middle panel; and p = 10^{-2}, lower panel. As the p-values decrease, the number of predicted y- and b-ions identified in the data increases, as does the reliability of the peptide identification. Within the peptide sequence shown above each panel, red letters indicate identification of residues identified in both consecutive y- and b-ions; green letters, residues identified in consecutive y-ions; blue letters, residues identified in consecutive y-ions; blue letters, residues identified in consecutive b-ions, and black letters, residues not identified. Below the mass spectrum in each panel is the table of predicted product ions from the amino acid sequence of this peptide. Ions which were detected are shown in red.

Figure 4. Structures of Some Reagents Recently Used for PS II Modification and Analysis by Tandem Mass Spectrometry. In parentheses are common names and, in the case of crosslinking reagents, the maximum distance between crosslinked residues. EDC can be used either as a protein crosslinker or, in the presence of excess glycine methyl ester or glycine ethyl ester, a site-specific labeling reagent.

Figure 5. Partial Interaction Map of Phycobilisome Subunits. Only the crosslinking interactions exhibiting low p-values from [119] are illustrated; for a more complete map the reader should consult the original paper. Blue, phycocyanin subunits; cyan, allophycocyanin subunits. Individual crosslinked products are labeled and indicated by lines.

Figure 6. Interaction Maps of Phycobilisome Subunits with PS I and PS II. A. Phycobilisome-PS I interactions illustrating the crosslinked products observed between their subunits [115]. B. Phycobilisome-PS II interactions illustrating the crosslinked products observed between their subunits. Dark green, PS I subunits; pale green, PS II subunits; blue,
phycocyanin subunits; cyan, allophycocyanin subunits. Individual crosslinked products are labeled and indicated by lines.

Figure 7. OCP Interactions with Allophycocyanin and Light-Induced OCP Conformational Changes. A. Interaction map of OCP with allophycocyanin. Cyan, allophycocyanin subunits; orange, OCP; blue, phycocyanin subunits, which were observed to be crosslinked to each other but not to allophycocyanin of the OCP[118]. Individual crosslinked products are indicated by lines and are labeled. B. Observed conformational changes upon conversion of OCP to OCP⁰. Red, increased chemical labeling of carboxylates in the OCP⁰ state; pink, decreased chemical labeling in the OCP⁰ state; blue, decreased radiolytic modification in the OCP⁰ state; light-blue, increased radiolytic modification in the OCP⁰ state[97, 157].

Figure 8. Interactions of CyanoQ within Cyanobacterial PS II. A. Interaction map of CyanoQ with other PS II subunits. Green, PsbB; white, PsbO and CyanoQ [117]. Individual crosslinked products are indicated by lines and are labeled. B. Proposed structure of the symmetrical CyanoQ-CyanoQ dimer with one subunit shown in pink and the other in light green. Residues shown as spheres are involved in crosslinking; red residues and green residues participate in inter-PsbQ subunit crosslinked products and the distances between these residues are shown. The other residues shown as spheres are involved in crosslinking PsbQ to PsbO and PsbB.

Figure 9. Interactions of PsbP and PsbQ within Higher Plant PS II. A. Interaction map of PsbP and PsbQ with other PS II subunits. Green, CP 26, PsbE and PsbR; white, PsbP and PsbQ [78, 116, 167]. Individual crosslinked products are indicated by lines and are labeled. For clarity, the nine independent crosslinked products between the N- and C-terminal domains within PsbP have been omitted [78]. B. Proposed structural interaction between PsbP (pale-green) and PsbQ (pale-blue). The distances between the crosslinked residues are labeled. C. Proposed structure of the higher plant PsbQ-PsbQ dimer with one subunit shown in light blue and the other in blue. The distances between the inter-PsbQ crosslinked residues are labeled.

Figure 10. Identification of Putative Water Channels and Oxygen Egress Pathways in Higher Plant PS II. The oxidatively modified residues are mapped onto the 1.9 Å cyanobacterial crystal structure[6]. A. Residues associated with a putative water channel. B. Residues associated with putative oxygen or ROS egress pathway. Pink, CP 47; light brown, D2; pale yellow, D1; pale green, CP 43; blue, PsbO. Modified residues are shown as spheres in darker shades. It should be noted that the modified residues 363F (in A.) and 355T (in B.) are not visible in these views.

Figure 11. Natively Oxidized Residues in PS II. Natively oxidized residues are mapped onto the 1.9 Å cyanobacterial crystal structure [6] and shown as spheres. The PS II cofactors are shown as sticks and are labeled, the proteins (yellow, D1; brown, D2; and green, CP43) are shown in the background. D2:386H was identified in Thermosynechococcus[213]; all other residues were identified in higher plants[75, 77, 207, 208].

Figure 12. Interaction of CP 43 with the Assembly Factor Psb27. A. Interaction map of CP43 with Psb27 [114]. Green, CP43; white, Psb27. Individual crosslinked products are indicated
by lines and are labeled. B. Chemical footprinting of the CP 43-Psb27 interaction. Green spheres, CP 43 residues labeled in the absence of Psb27. The CP43 residues identified as being crosslinked to Psb27: 216K and 321D are shown in blue and red spheres, respectively[96].

5. REFERENCES

[88] L.K. Frankel, T.M. Bricker, Interaction of CPa-1 with the manganese-stabilizing protein of Photosystem II: Identification of domains on CPa-1 which are shielded from N-hydroxysuccinimide biotinylation by the manganese-stabilizing protein, Biochemistry, 31 (1992) 11059-11063.

[92] T.M. Bricker, L.K. Frankel, Carboxylate groups on the manganese-stabilizing protein are required for efficient binding of the 24 kDa extrinsic protein to Photosystem II, Biochemistry, 42 (2003) 2056-2061.

R. Ettrich Raman spectroscopy adds complementary detail to the high-resolution X-ray crystal structure of photosynthetic PsbP from *Spinacia oleracea*, Plos One, 7 (2012) e46694.

[176] F.M. Ho, S. Styring, Access channels and methanol binding site to the CaMn$_4$ cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access, Biochim Biophys Acta, 1777 (2008) 140-153.

A.N. Macpherson, A. Telfer, T.G. Truscott, J. Barber Direct detection of singlet oxygen from isolated Photosystem II reaction centres, Biochim Biophys Acta, 1143 (1993) 301-309.

Figure 1

A.

B.
A. Phycobilisome - PS I

B. Phycobilisome - PS II
Table 1. *Mass Accuracies and Sensitivity of Modern Mass Spectrometers Used in Proteomics*

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>Mass Accuracy</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTICR</td>
<td>0.1 - 1 ppm</td>
<td>femtomole</td>
</tr>
<tr>
<td>Orbitrap</td>
<td>0.1 - 1 ppm</td>
<td>femtomole</td>
</tr>
<tr>
<td>TOF</td>
<td>1 - 5 ppm</td>
<td>femtomole</td>
</tr>
<tr>
<td>TQ</td>
<td>50-200 ppm</td>
<td>femtomole</td>
</tr>
<tr>
<td>LIT</td>
<td>50-200 ppm</td>
<td>femtomole</td>
</tr>
</tbody>
</table>

These values are under optimal conditions. In practice, on real world peptides, observed mass accuracies are typically somewhat lower.

FTICR, Fourier-transform ion cyclotron resonance, LTQ-Orbitrap; linear trap quadrupole; TOFMS, time-of-flight, time-of-flight; TQ, triple quadrupole; LIT, linear ion trap.