The Laplacian polynomial and Kirchhoff index of graphs based on R-graphs

Qun Liua, Jia-Bao Liub, Jinde Caoc,d,*

aDepartment of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
bDepartment of Public Courses, Anhui Xinhua University, Hefei 230088, China
cResearch Center for Complex Systems and Network Science, Department of Mathematics, Southeast University, Nanjing 210096, China
dDepartment of Mathematics, Faculty of Science, King Abdulazez University, Jeddah 21589, Saudi Arabia

Abstract

Let $R(G)$ be the graph obtained from G by adding a new vertex corresponding to each edge of G and by joining each new vertex to the end vertices of the corresponding edge. Let $I(G)$ be the set of newly added vertices. The R-vertex corona of G_1 and G_2, denoted by $G_1 \circ G_2$, is the graph obtained from vertex disjoint $R(G_1)$ and $|V(G_1)|$ copies of G_2 by joining the ith vertex of $V(G_1)$ to every vertex in the ith copy of G_2. The R-edge corona of G_1 and G_2, denoted by $G_1 \odot G_2$, is the graph obtained from vertex disjoint $R(G_1)$ and $|I(G_1)|$ copies of G_2 by joining the ith vertex of $I(G_1)$ to every vertex in the ith copy of G_2. Liu et al. gave formulae for the Laplacian polynomial and Kirchhoff index of $RT(G)$ in [19]. In this paper, we give the Laplacian polynomials of $G_1 \circ G_2$ and $G_1 \odot G_2$ for a regular graph G_1 and an arbitrary graph G_2; on the other hand, we derive formulae and lower bounds of Kirchhoff index of these graphs and generalize the existing results.

© 2011 Published by Elsevier Ltd.

Keywords: Kirchhoff index, Resistance distance, Corona, Edge corona, Laplacian polynomial, Schur complement

1. Introduction

Throughout this article, all graphs considered are simple and undirected. Let $G = (V(G), E(G))$ be a graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ and edge set $E(G) = \{e_1, e_2, ..., e_m\}$. The adjacency matrix of G, denoted by $A(G)$, is an $n \times n$ symmetric matrix such that $a_{ij} = 1$ if vertices v_i and v_j are adjacent and 0 otherwise. Let $d_i = d_G(v_i)$ be the degree of vertex v_i in G and $D(G) = \text{diag}(d_1, d_2, ..., d_n)$ be the diagonal matrix of vertex degrees. The Laplacian matrix of G are defined as $L(G) = D(G) - A(G)$. Denoted by $P_G(x)$ and $\mu_G(x)$ the adjacent characteristic polynomial $\text{det}(xI - A(G))$ and the Laplacian characteristic polynomial $\text{det}(xI - L(G))$ of G, respectively. Since $A(G)$ and $L(G)$ are all real symmetric matrices, their eigenvalues are real numbers. So we can assume that $\lambda_1(G) \geq \lambda_2(G) \geq ... \geq \lambda_n(G)$ (resp., $0 = \mu_1(G) \leq \mu_2(G) \leq ... \leq \mu_n(G)$) are the adjacency (resp., Laplacian) eigenvalues of G. The collection of the adjacency (resp., Laplacian) eigenvalues of G together with their multiplicities forms the adjacency (resp., Laplacian) spectrum of G. For other undefined notations and terminology from graph theory, the readers may refer to [1] and the

*Corresponding author

Email addresses: liuqun09@yeah.net (Qun Liu), liujiabaoad@163.com (Jia-Bao Liu), jdcao@seu.edu.cn (Jinde Cao)
There are many applications for Laplacian eigenvalues of graphs. For example, there are many problems in physics and chemistry where the Laplacian eigenvalues play the central role. The Laplacian eigenvalues are in the segmentation of the combination optimization, method of design, parallel algorithm, solving linear systems, clustering and other aspects of a wide range of applications. See [33],[34].

In 1993, Klein and Randić [2] introduced a distance function named resistance distance on the basis of electrical network theory. They view a graph as an electrical network each edge of the graph is assumed to be a unit resistor, then take the resistance distance between vertices to be the effective resistance between them. Let G be a simple graph with the vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$, and r_{ij} denote the effective resistance distance between vertices v_i and v_j as computed with Ohm’s law when all the edges of G are considered to be unit resistors. The sum of resistance distance $Kf(G) = \sum_{i<j} r_{ij}(G)$ was proposed in [1], later called the Kirchhoff index of G in [3]. In electric theory, it is of interest to compute the effective resistance between any pair of vertices of a network, as well as the Kirchhoff index.

The Kirchhoff index was introduced in chemistry as a better alternative to other parameters used for discriminating different molecules with similar shapes and structures. See [2]. The resistance distance and the Kirchhoff index attracted extensive attention due to its wide applications in physics, chemistry, etc. See [4]-[9]). For more information on resistance distance and Kirchhoff index of graphs, the readers are referred to the papers ([7]-[9]).

In [10], new graph operations based on $R(G)$ graphs: R-vertex corona and R-edge corona, are introduced, and their A-spectrum(resp., L-spectrum) are investigated. For a graph G, Let $R(G)$ be the graph obtained from G by adding a new vertex u_e and joining u_e to the end vertices of e for each $e \in E(G)$. The graph $R(G)$ appeared in [11] and we call it the R- graph of G. Let $I(G)$ be the set of newly added vertices, i.e $I(G) = V(R(G)) \setminus V(G)$.

Let G_1 and G_2 be two vertex-disjoint graphs.

Definition 1.1 ([10]) The R-vertex corona of G_1 and G_2, denoted by $G_1 \odot G_2$, is the graph obtained from vertex disjoint $R(G_1)$ and $|V(G_1)|$ copies of G_2 by joining the ith vertex of $V(G_1)$ to every vertex in the ith copy of G_2.

Definition 1.2 ([10]) The R-edge corona of G_1 and G_2, denoted by $G_1 \odot G_2$, is the graph obtained from vertex disjoint $R(G_1)$ and $|I(G_1)|$ copies of G_2 by joining the ith vertex of $|I(G_1)|$ to every vertex in the ith copy of G_2.

Note that if G_i has n_i vertices and m_i edges for $i = 1, 2$, then $G_1 \odot G_2$ has $n_1 + m_1 + n_1 n_2$ vertices and $3m_1 + n_1 m_2 + n_1 n_2$ edges, $G_1 \odot G_2$ has $n_1 + m_1 + m_1 n_2$ vertices and $3m_1 + m_1 m_2 + m_1 n_2$ edges.

As the authors of [12] pointed out, it is an interesting problem to compute Kirchhoff index of large composition graphs in terms of parameters of small graph in the composition [13, 14]. The Kirchhoff index has been computed for some classes of graphs, such as cycles [15], complete graph [15], distance transitive graphs [16], and so on [5, 8, 15, 17, 20, 21, 22, 23, 24, 25, 32]. The Kirchhoff index of certain composite operations between two graphs was studied as well, such as product, lexicographic product [18] and join, corona, cluster [12]. Then recently Liu et al. [19] explore the Laplacian polynomial of $RT(G)$ of a regular graph G. Motivated by these results, in this paper we compute the Laplacian polynomial of $G_1 \odot G_2$ and $G_1 \odot G_2$ for a regular graph G_1 and an arbitrary graph G_2 and derive formulae and low bounds of Kirchhoff index of these graphs and generalize their results in [19].

2. Preliminaries

In this section, we determine the characteristic polynomials of graphs with the help of the coronal of a matrix. The $M - coronal T_M(\lambda)$ of an $n \times n$ matrix M is defined [26, 27] to be the sum of the entries of the matrix $(\lambda I_n - M)^{-1}$, that is

$$T_M(\lambda) = I_n^T (\lambda I_n - M)^{-1} I_n,$$

where I_n denotes the column vector of dimension n with all the entries equal one.

If M has a constant row sum t, it is easy to verify that

$$T_M(\lambda) = \frac{n}{\lambda - t}.$$

(1)

The Kronecker product $A \otimes B$ of two matrices $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{p \times q}$ is the $mp \times nq$ matrix obtained from A by replacing each element a_{ij} by $a_{ij} B$. This is an associate operation with the property that $(A \otimes B)^T = A^T \otimes B^T$ and $(A \otimes B)(C \otimes D) = AC \otimes BD$ whenever the products AC and BD exists.
Lemma 2.1} [29] Let M_1, M_2, M_3 and M_4 be respectively $p \times p, p \times q, q \times p$ and $q \times q$ matrices with M_1 and M_4 invertible, then

$$\det \begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix} = \det(M_4) \det(M_1 - M_2M_4^{-1}M_3) = \det(M_1) \det(M_4 - M_3M_1^{-1}M_2),$$

where $M_1 - M_2M_4^{-1}M_3$ and $M_4 - M_3M_1^{-1}M_2$ are called the Schur complements of M_4 and M_1, respectively.

3. The Laplacian polynomial of R-vertex and R-edge corona

For a regular graph G_1, the next theorems give the representation of the Laplacian polynomial of $G_1 \odot G_2$ and $G_1 \oplus G_2$ by means of the characteristic polynomial and the Laplacian polynomial of G_1 and G_2.

Theorem 3.1 Let G_1 be an r_1-regular graph with n_1 vertices and m_1 edges and G_2 be an arbitrary graph with n_2 vertices. Then the Laplacian characteristic polynomial of $G_1 \odot G_2$ is given by

(i) $\mu_{G_1 \odot G_2}(x) = \prod_{i=1}^{n_1} (x - 1 - \mu_i(G_2))^{m_1} (3 - x)^{m_1} P_{G_1} \left(\frac{(x-2)(x-2)}{3-x} + \frac{r_i(2x-3)}{x-3} + \frac{n_2(x-2)}{(x-3)(x-1)} \right)$.

(ii) $\mu_{G_1 \oplus G_2}(x) = \prod_{i=1}^{n_1} (x - 1 - \mu_i(G_2))^{m_1} (3 - x)^{m_1} P_{G_1} \left(\frac{(x-2)(x-2)}{3-x} + \frac{r_i(2x-3)}{x-3} + \frac{n_2(x-2)}{(x-3)(x-1)} \right)$.

Proof (i) Let B be the vertex-edge incidence matrix of G_1. Since G_1 is an r_1-regular graph, we have $D(G_1) = r_1 I_{n_1}$.

By a pertinent labeling of the vertices of $G_1 \odot G_2$, then the Laplacian matrix of $G_1 \odot G_2$ can be written as

$$L(G_1 \odot G_2) = \begin{pmatrix} 2I_{n_1} & -B^T & 0_{m_1 \times n_2} \\ -B & (r_1 + n_2)I_{n_1} + L(G_1) & -I_{n_1} \otimes 1_{n_2} \\ 0_{n_1 \times n_2 \times n_1} & -I_{n_1} \otimes 1_{n_2} & I_{n_1} \otimes (I_{n_2} + L(G_2)) \end{pmatrix},$$

where 0_n denotes the length-n column vectors consisting entirely of 0’s.

It follows that

$$\mu_{G_1 \odot G_2}(x) = \det \begin{pmatrix} (x-2)I_{n_1} & -B^T & 0_{m_1 \times n_2} \\ B & (x - r_1 - n_2)I_{n_1} - L(G_1) & I_{n_1} \otimes 1_{n_2} \\ 0_{n_1 \times n_2 \times n_1} & I_{n_1} \otimes 1_{n_2} & I_{n_1} \otimes ((x-1)I_{n_2} - L(G_2)) \end{pmatrix},$$

$$(2)$$

where

$$S = \begin{pmatrix} (x-2)I_{n_1} & -B^T \\ B & (x - r_1 - n_2)I_{n_1} - L(G_1) \end{pmatrix}^{-1} \begin{pmatrix} 0_{m_1 \times n_2} \\ I_{n_1} \otimes 1_{n_2} \end{pmatrix} = \begin{pmatrix} (x-2)I_{n_1} & -B^T \\ B & (x - r_1 - n_2)I_{n_1} - L(G_1) \end{pmatrix}^{-1} \begin{pmatrix} 0_{m_1 \times n_1} \\ I_{n_1} \otimes 1_{n_2} \end{pmatrix} = \begin{pmatrix} (x-2)I_{n_1} & -B^T \\ B & (x - r_1 - n_2)I_{n_1} - L(G_1) \end{pmatrix}^{-1} \begin{pmatrix} 0_{m_1 \times n_1} \\ T_{L(G_2)}(x)I_{n_1} \end{pmatrix}.$$

From (1), we have $T_{L(G_2)}(x) = \frac{n_2}{x-1}$ as each row sum of $L(G_2)$ is equal to 0. It is well known that $BB^T = A(G_1) + r_1 I_{n_1}$.

Consequently,

$$\det(S) = \det((x-2)I_{n_1}) \det((x - r_1 - n_2 - \frac{n_2}{x-1})I_{n_1} - L(G_1) - 1) = \det((x-2)^{m_1}(3-x)^{n_1} \begin{pmatrix} (x-2)(x-2) \\ 3-x \\ x-3 \\ (x-3)(x-1) \end{pmatrix})$$
Consequently, we have already established the statement (i) in Theorem 3.1.

(ii) Recall that \(L(G) = r_L - A(G) \). It follows from that

\[
\det(S) = (x-2)^{m_1} \cdot \det \left((x-2) - r_1 - n_2 - \frac{n_1}{x-1} - \frac{n_2}{x-2} A(G_1) + \frac{r_1 x}{x-3} - \frac{r_2 x}{x-2} \right) A(G_1) - (r_1 I_{n_1} - A(G_1))
\]

Thus, the proof is thus completed.

Remark 3.2. In [19], the authors gave the Laplacian polynomial of \(G_1 \otimes G_2 \) when \(G_2 \) is \(K_2 \), but we obtain the Laplacian polynomial of \(G_1 \otimes G_2 \) when \(G_2 \) is an arbitrary graph, so we generalize Theorem 3.1 in [19].

Next, we consider the case for \(G_1 \otimes G_2 \). For a regular graph, the next theorem gives the representation of the Laplacian polynomial of \(G_1 \otimes G_2 \) by means of the characteristic polynomial and the Laplacian polynomial of \(G_1 \) and \(G_2 \).

Theorem 3.3 Let \(G_1 \) be an \(r_1 \)-regular graph with \(n_1 \) vertices and \(m_1 \) edges and \(G_2 \) be an arbitrary graph with \(n_2 \) vertices. Then the Laplacian characteristic polynomial of \(G_1 \otimes G_2 \) is given by

\[
(\mu_{G_1 \otimes G_2}(x) = \prod_{i=1}^{n_2} \left(x - \mu_i(G_2) \right)^{m_1} \cdot \det(S) \right)
\]

where

\[
\det(S) = \prod_{i=1}^{n_2} \left(x - \mu_i(G_2) \right)^{m_1} \cdot \det(S)
\]

With \(\mu_{G_1 \otimes G_2}(x) = \prod_{i=1}^{n_2} \left(x - \mu_i(G_2) \right)^{m_1} \cdot \det(S) \),

\[
\det(S) = \prod_{i=1}^{n_2} \left(x - \mu_i(G_2) \right)^{m_1} \cdot \det(S)
\]

By a pertinent labeling of the vertices of \(G_1 \otimes G_2 \), then the Laplacian matrix of \(G_1 \otimes G_2 \) can be written as

\[
L(G_1 \otimes G_2) = \begin{bmatrix}
 (n_2 + 2)I_{m_1} & -B^T & -I_{m_1} \otimes 1_{n_2} \\
 -B & r_1 I_{n_1} + L(G_1) & 0_{n_1 \times n_2} \\
 -I_{m_1} \otimes 1_{n_2} & 0_{n_1 \times n_2} & I_{n_1} \otimes (I_{n_2} + L(G_2))
\end{bmatrix}
\]

It follows that

\[
\mu_{G_1 \otimes G_2}(x) = \prod_{i=1}^{n_2} \left(x - \mu_i(G_2) \right)^{m_1} \cdot \det(S).
\]

From (1), we have \(T_{L(G_2)}(x-1) = \frac{n_2}{x-1} \) as each row sum of \(L(G_2) \) is equal to \(0 \). Note that \(BB^T = A(G_1) + r_1 I_{n_1} \).

Consequently,

\[
det(S) = \prod_{i=1}^{n_2} \left(x - \mu_i(G_2) \right)^{m_1} \cdot \det(S).
\]

Finally, we have

\[
\mu_{G_1 \otimes G_2}(x) = \prod_{i=1}^{n_2} \left(x - \mu_i(G_2) \right)^{m_1} \cdot \det(S).
\]
By virtue of (4) and (5) we have already established the statement (i) in Theorem 3.2.
(ii) Recall that $L(G) = rI_n - A(G)$. It follows from that

$$det(S) = (x - n_2 - 2 - T_{L(G)}(x - 1))^n det\left(x - 2r_1 - \frac{\partial}{\partial x} T_{L(G)}(x - 1) I_{n_1} \right) + (1 - \frac{\partial}{\partial x} T_{L(G)}(x - 1)) A(G_1)$$

$$= (x^2 - (3 + n_2)x + 2)^{n_1-m} \left((x - 4 + n_2)x + 3)^{n_2} \mu_{G_1} \left(\frac{1}{x^2 - (3 + n_2)x + 2} \right) \right).$$

The proof is thus completed.

4. The Kirchhoff index of R-vertex and R-edge corona

In this section, we will explore the Kirchhoff index of the $G_1 \circ G_2$ and $G_1 \oplus G_2$ for a regular graph G_1 and an arbitrary graph G_2.

Gutman and Mohar [30] and Zhu et al. [31] established the relationship between the Laplacian spectrum and Kirchhoff index as follows:

Lemma 4.1 [30] Let G be a connected graph with $n \geq 2$ vertices. Then

$$K_f(G) = n \sum_{i=1}^{n-1} \frac{1}{\delta_i}.$$

Denote by δ_i the degree of vertex $v_i \in V(G)$. Zhou and Trinajstić. [22] proved that

Lemma 4.2 [17] Let G be a connected graph with $n \geq 2$ vertices. Then

$$K_f(G) \geq -1 + (n - 1) \sum_{v_i \in V(G)} \frac{1}{\delta_i}$$

with equality attained if and only if $G = K_n$ or $G = K_{t,n}$, for $1 \leq t \leq \lfloor \frac{n}{2} \rfloor$.

The following lemma established a nice relationship between the Laplacian polynomial and Kirchhoff index as follows:

Lemma 4.3 [15] Let G be a connected graph with $n \geq 2$ vertices and $\mu_G(x) = x^n + a_1x^{n-1} + ... + a_{n-1}x$. Then

$$\frac{K_f(G)}{n} = -\frac{a_{n-2}}{a_{n-1}}(a_{n-2} = 1 \text{ whenever } n = 2).$$

Let K_n denote the complete graph with n vertices. If $G = K_n$, we have nothing to discuss. So we assume that $G \neq K_1$ throughout this paper. The following Theorem 4.4 generalizes the Theorem 4.4 in [19] and we get the generalized results.

Theorem 4.4 Let G_1 be an r_1-regular graph with n_1 vertices and m_1 edges and G_2 be an arbitrary graph with n_2 vertices. Then

$$K_f(G_1 \circ G_2) = \frac{(2n_2 + r_1 + 2)^2}{6} K_f(G_1) + \frac{n_1(3 + n_2 + r_1)}{2} + \frac{2n_1(n_1 - 1)(2 + r_1 + 2n_2)}{3}$$

$$+ \frac{n_2^2(r_1 - 2)(r_1 + 2 + 2n_2)}{8} + \frac{n_2^2(2 + r_1 + 2n_2)}{2} \sum_{i=2}^{n_2} \frac{1}{1 + \mu_i(G_2)}.$$
Proof Let \(\mu_G(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x \). It follows from Theorem 3.1 (ii) that

\[
\mu_{G \cap G_2}(x) = \prod_{i=1}^{n_1} (x - 1 - \mu_i(G_2))^n (x - 2)^{m_i-n_i} (x - 3)^{n_i} [x^n (\frac{x^2 - (3 + n_2 + r_1)x + (2n_2 + r_1 + 2)}{x-1})^{m_i-1} + \ldots + a_{n_i-2} x^2 (\frac{x^2 - (3 + n_2 + r_1)x + (2n_2 + r_1 + 2)}{x-1})^{m_i-2} + a_{n_i-1} x (\frac{x^2 - (3 + n_2 + r_1)x + (2n_2 + r_1 + 2)}{x-1})^{m_i-3}]
\]

where \(x \neq 1, 3 \). So the coefficient of \(x^3 \) in \(\mu_{G \cap G_2}(x) \) is

\[
(-2)^{m_i-n_i} \prod_{i=2}^{n_1} (-1 + \mu_i(G_2))^{n_i} [a_{n_i-2}(2n_2 + r_1 + 2)^2(-1)^{n_i-2}(-3)^{n_i-2}
+ a_{n_i-1}(-3 + n_2 + r_1)(-1)^{m_i-3}(-3)^{n_i-1}
+ a_{n_i-1}(2n_2 + r_1 + 2)(n_1 - 1)(-1)^{m_i-2}(-3)^{n_i-1}
+ a_{n_i-1}(2n_2 + r_1 + 2)(-1)^{n_i-1}(n_1 - 1)(-3)^{n_i-2})

+ (m_1 - n_1)(-2)^{m_i-n_i} \prod_{i=2}^{n_1} (1 + \mu_i(G_2))^{n_i} a_{n_i-1}(2n_2 + r_1 + 2)(-1)^{n_i-1}(-3)^{n_i-1}

+ (-2)^{m_i-n_i} \sum_{j=2}^{n_2} n_j (1 + \mu_j(G_2))^{n_j-1} m_{i=2, j \neq j}^{n_2} (-(1 + \mu_i(G_2))^{n_i} a_{n_i-1})

(2n_2 + r_1 + 2)(-1)^{n_i-1}(-3)^{n_i-1},
\]

and the coefficient of \(x \) in \(\mu_{G \cap G_2}(x) \) is

\[
(-2)^{m_i-n_i} \prod_{i=2}^{n_1} (-(1 + \mu_i(G_2))^{n_i} (2n_2 + r_1 + 2)(-1)^{n_i-1}(-3)^{n_i-1}) a_{n_i-1}.
\]

Note that \(G_1 \cap G_2 \) has \(n_1 + m_1 + n_1 n_2 \) vertices. It follows from Lemma 4.3, (6) and (7) that

\[
\frac{Kf(G_1 \cap G_2)}{n_1 + m_1 + n_1 n_2} = - \frac{a_{n_i-2} 2n_2 + r_1 + 2}{3} + \frac{3 + n_2 + r_1}{2n_2 + r_1 + 2} + \frac{4(n_1 - 1)}{3}
+ \frac{m_1 + n_1}{2} + \sum_{i=2}^{n_1} \frac{n_i}{1 + \mu_i(G_2)}.
\]

Substituting the result of Lemma 4.3 and \(m_1 = \frac{n_1 n_2}{2} \) into the above equation, we have

\[
Kf(G_1 \cap G_2) = \frac{2n_2 + r_1 + 2}{3 n_1} (n_1 + m_1 + n_1 n_2) Kf(G_1) + \frac{3 + n_2 + r_1}{2n_2 + r_1 + 2} (n_1 + m_1 + n_1 n_2)
+ \frac{4(n_1 - 1)}{3} (n_1 + m_1 + n_1 n_2) + \frac{m_1 - n_2}{6} (n_1 + m_1 + n_1 n_2).
\]
Summing up, we complete the proof.

Remark 4.5: Comparison to the Laplacian polynomial and its Kirchhoff index of \(RT(G) \) in [19], our results of the graph \(G_1 \circ G_2 \) has generality. It is clear that handling the problems of Laplacian polynomial and Kirchhoff index are more difficult and complex, but we deduce those with a simple approach.

In what follows, we give a lower bound for the Kirchhoff index of \(G_1 \circ G_2 \).

Corollary 4.6 Let \(G_1 \) be an \(r_1 \)-regular graph with \(n_1 \) vertices and \(m_1 \) edges and \(G_2 \) be an arbitrary graph with \(n_2 \) vertices. Then

\[
Kf(G_1 \circ G_2) \geq \frac{n_1(n_1-1)(2n_2 + r_1 + 2)^2}{6} + \frac{n_1(3 + n_2 + r_1)}{2} + \frac{n_1^2(r_1 - 2)(r_1 + 2 + 2n_2)}{8} + \frac{n_1^2(2 + r_1 + 2n_2)}{2} + \frac{n_1}{8} \sum_{i=2}^{n_1 \frac{1}{1 + \mu_i(G_2)}}.
\]

Proof It follows from Lemma 4.2 and Theorem 4.4 that

\[
Kf(G_1 \circ G_2) \geq \frac{(2n_2 + r_1 + 2)^2}{6} \left(\frac{n_1(n_1 - 1)}{r_1} - 1 \right) + \frac{n_1(3 + n_2 + r_1)}{2} + \frac{n_1^2(r_1 - 2)(r_1 + 2 + 2n_2)}{8} + \frac{n_1^2(2 + r_1 + 2n_2)}{2} + \frac{n_1}{8} \sum_{i=2}^{n_1 \frac{1}{1 + \mu_i(G_2)}}.
\]

The following result is proved in a way that is certainly similar in spirt to the proof of Theorem 4.4.

Theorem 4.7 Let \(G_1 \) be an \(r_1 \)-regular graph with \(n_1 \) vertices and \(m_1 \) edges and \(G_2 \) be an arbitrary graph with \(n_2 \) vertices. Then

\[
Kf(G_1 \circ G_2) = \frac{(r_1n_2 + r_1 + 2)^2}{6} Kf(G_1) + \frac{n_1(3 + n_2 + r_1)}{2} + \frac{(n_1^2 - n_1)(n_2 + 4)(2 + r_1 + r_1n_2)}{6} + \frac{n_1^2(r_1 - 2)(3 + n_1)(r_1 + 2 + r_1n_2)}{8} + \frac{n_1^2(2 + r_1 + 2n_2)}{4} + \frac{n_1}{8} \sum_{i=2}^{n_1 \frac{1}{1 + \mu_i(G_2)}}.
\]

Proof Let \(\mu_G(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x \). It follows from Theorem 3.2 (ii) that

\[
\mu_{G \circ G_2}(x) = \prod_{i=2}^{n_1} \left(x - n_1 \mu_i(G_2) \right)^{n_1} \left(x^2 - (3 + n_2)x + 2 \right)^{n_1-n_1} \left(x^2 - (4 + n_2)x + 3 \right)^{n_1}
\]

\[
+ a_{n_1-2} x^2 \left(x^2 - (3 + n_2)x + (r_1n_2 + r_1 + 2) \right)^{n_1-n_1} \left(x^2 - (4 + n_2)x + 3 \right)^{n_1-n_1}.
\]
Then $\Gamma f(G_1 \oplus G_2)$ has $n_1 - 1$ vertices and $\frac{m_1}{2} + m_1$ edges and G_2 be an arbitrary graph with n_2 vertices. Then

\[
K f(G_1 \oplus G_2) \geq \frac{(n_1^2 - n_1)(r_1 n_2 + r_1 + 2)^2}{6 r_1} + \frac{n_1 (3 + n_2 + r_1)}{2} + \frac{(n_1^2 - n_1)(n_2 + 4)(2 + r_1 + r_1 n_2)}{6} + \frac{n_1^3}{8} - 2 r_1 n_2 - 2 r_1 - 4(2 + r_1 + r_1 n_2) + \sum_{i=2}^{n_2} \frac{1}{1 + \mu_i(G_2)}.
\]
Proof It follows from Lemma 4.2 and Theorem 4.6 that

\[
\begin{align*}
K_f(G_1 \ominus G_2) \geq & \frac{(r_1n_2 + r_1 + 2)^2}{6} \left(\frac{n_1(n_1 - 1)}{r_1} - 1 \right) + \frac{n_1(3 + n_2 + r_1)}{2} + \frac{n_1^2 r_1 (2 + r_1 + r_1n_2)}{4} \\
& + \frac{(n_1^2 - n_1)(n_2 + 4)(2 + r_1 + r_1n_2)}{6} + \frac{n_1^2(r_1 - 2)(3 + n_1)(r_1 + 2 + r_1n_2)}{8} \sum_{i=2}^{n_1} \frac{1}{1 + \mu_i(G_2)} \\
& = \frac{(n_1^2 - n_1)(r_1n_2 + r_1 + 2)^2}{6r_1} + \frac{n_1(3 + n_2 + r_1)}{2} + \frac{(n_1^2 - n_1)(n_2 + 4)(2 + r_1 + r_1n_2)}{6} \\
& + \frac{(3n_1^2 r_1 - 2r_1n_2 - 2r_1 - 4)(2 + r_1 + r_1n_2)}{12} + \frac{n_1^2(r_1 - 2)(3 + n_1)(r_1 + 2 + r_1n_2)}{8} \sum_{i=2}^{n_1} \frac{1}{1 + \mu_i(G_2)}.
\end{align*}
\]

At last, we give an example.

Example 4.9 Let \(K_n \) a complete graph on \(n \) vertices. Note that the eigenvalues of \(L_{K_n} \) are 0 and \(n \) repeated \(n - 1 \) times. Then by Theorem 4.4 and Theorem 4.7, we have

\[
\begin{align*}
K_f(K_n \ominus K_n) &= \frac{(2n_2 + r_1 + 2)^2}{6} \left((n_1 - 1) - 1 \right) + \frac{n_1(3 + n_2 + r_1)}{2} + \frac{2n_1(n_1 - 1)(2 + r_1 + 2n_2)}{3} \\
& + \frac{n_1^2(r_1 - 2)(r_1 + 2 + 2n_2)}{8} + \frac{n_1^2(2 + r_1 + 2n_2)}{2} \left(\frac{n_2 - 1}{1 + n_2} \right),
\end{align*}
\]

\[
\begin{align*}
K_f(K_n \ominus K_n) &= \frac{(r_1n_2 + r_1 + 2)^2}{6} \left((n_1 - 1) - 1 \right) + \frac{n_1(3 + n_2 + r_1)}{2} + \frac{(n_1^2 - n_1)(n_2 + 4)(2 + r_1 + r_1n_2)}{6} \\
& + \frac{n_1^2(r_1 - 2)(3 + n_1)(r_1 + 2 + r_1n_2)}{8} + \frac{n_1^2r_1(r_1 + 2 + r_1n_2)}{4} \left(\frac{n_2 - 1}{1 + n_2} \right).
\end{align*}
\]

5. Conclusions

In this paper, we explore the Laplacian polynomial of \(G_1 \ominus G_2 \) and \(G_1 \ominus G_2 \) for a regular graph \(G_1 \) and an arbitrary graph \(G_2 \) and derive formulae for Kirchhoff index of these graphs. By utilizing the spectral graph theory, we establish the explicit formulas for \(K_f(G_1 \ominus G_2) \) and \(K_f(G_1 \ominus G_2) \) in terms of \(K_f(G_1) \), \(K_f(G_2) \), the number of vertices and the vertex degree of regular graph \(G_1 \) and \(G_2 \), based on which we propose a lower bound for the Kirchhoff index for \(G_1 \ominus G_2 \) and \(G_1 \ominus G_2 \) with respect to the number of vertices and the vertex degree.

Acknowledgments

The authors are grateful to the anonymous referees for many valuable comments and suggestions, which led to great improvements of the original manuscript. This work was supported by the National Natural Science Foundation of China (no.11461020) and the Youth Foundation of Hexi University in Gansu Province (no.QN2013-07). The work of J.B. Liu was partly supported by the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China under Grant no. KJ2015A331, and the National Science Foundation of China under Grant nos. 11471016 and 11401004. The work of J. Cao was partly supported by the National Natural Science Foundation of China under Grant 61272530, the Natural Science Foundation of Jiangsu Province of China under Grant BK2012741, the Specialized Research Fund for the Doctoral Program of Higher Education under Grants 20110092110017 and 20130092110017.
References

Qun Liu received the B.S. degree in Mathematics education from Northwest Normal University, Lanzhou, China, in 2003, and the M.S. degree in fundamental mathematics from Lanzhou University, Lanzhou, China, in 2009, respectively. She is currently a lecturer, and is working toward the Ph.D. degree at Lanzhou University, Lanzhou, China.
Her current research interests include graph theory and its applications and complex dynamical networks.

Jia-Bao Liu received the B.S. degree in mathematics and applied mathematics from Wanxi University, Anhui, China, in 2005, and the M.S. degree in mathematics and applied mathematics from Anhui University, Anhui, China, 2009, respectively. He was a visiting researcher with Southeast University, Nanjing, China, in 2013. He is currently an associate professor, and is working toward the Ph.D. degree at Anhui University, Hefei, China. His current research interests include fractional calculus theory, graph theory and its applications, neural networks, and complex dynamical networks.

Jinde Cao (M’07-SM’07) Jinde Cao received the B.S. degree from Anhui Normal University, Wuhu, China, the M.S. degree from Yunnan University, Kunming, China, and the Ph.D. degree from Sichuan University, Chengdu, China, all in mathematics/applied mathematics, in 1986, 1989 and 1998, respectively. From March 1989 to May 2000, he was with the Yunnan University. In May 2000, he joined the Department of Mathematics, Southeast University, Nanjing, China. From July 2001 to June 2002, he was a Postdoctoral Research Fellow at the Department of Automation and Computer-Aided Engineering, Chinese University of Hong Kong, Hong Kong. In the period from 2006 to 2008, he was a Visiting Research Fellow and a Visiting Professor at the School of Information Systems, Computing and Mathematics, Brunel University, UK. On August 2014, he was a Visiting Professor at the School of Electrical and Computer Engineering, RMIT University, Australia. Currently, he is a distinguished professor and doctoral advisor at the Southeast University and also distinguished adjunct professor at the King Abdulaziz University, prior to which he was a Professor at Yunnan University from 1996 to 2000. He is the author or coauthor of more than 300 journal papers and five edited books. His research interests include nonlinear systems, neural networks, complex systems and complex networks, stability theory, and applied mathematics. Dr. Cao was an Associate Editor of the IEEE Transactions on Neural Networks, Journal of the Franklin Institute and Neurocomputing. He is an Associate Editor of the IEEE Transactions on Cybernetics, Differential Equations and Dynamical Systems, Mathematics and Computers in Simulation, and Neural Networks. Dr. Cao is a Reviewer of Mathematical Reviews and Zentralblatt-Math. He is a ISI Highly-Cited Researcher in Mathematics and Engineering listed by Thomson Reuters.
Qun Liu received the B.S. degree in Mathematics education from Northwest Normal University, Lanzhou, China, in 2003, and the M.S. degree in fundamental mathematics from Lanzhou University, Lanzhou, China, in 2009, respectively. She is currently a lecturer, and is working toward the Ph.D. degree at Lanzhou University, Lanzhou, China. Her current research interests include graph theory and its applications and complex dynamical networks.

Jia-Bao Liu received the B.S. degree in mathematics and applied mathematics from Wanxi University, Anhui, China, in 2005, and the M.S. degree in mathematics and applied mathematics from Anhui University, Anhui, China, 2009, respectively. He was a visiting researcher with Southeast University, Nanjing, China, in 2013. He is currently a associate professor, and is working toward the PH.D. degree at Anhui University, Hefei, China. His current research interests include fractional calculus theory, graph theory and its applications, neural networks, and complex dynamical networks.

Jinde Cao received the B.S. degree from Anhui Normal University, Wuhu, China, the M.S. degree from Yunnan University, Kunming, China, and the Ph.D. degree from Sichuan University, Chengdu, China, all in mathematics/applied mathematics, in 1986, 1989 and 1998, respectively. From March 1989 to May 2000, he was with the Yunnan University. In May 2000, he joined the Department of Mathematics, Southeast University, Nanjing, China. From July 2001 to June 2002, he was a Postdoctoral Research Fellow at the Department of Automation and Computer-Aided Engineering, Chinese University of Hong Kong, Hong Kong. In the period from 2006 to 2008, he was a Visiting Research Fellow and a Visiting Professor at the School of Information Systems, Computing and Mathematics, Brunel University, UK. On August 2014, he was a Visiting Professor at the School of Electrical and Computer Engineering, RMIT University, Australia. Currently, he is a distinguished professor and doctoral advisor at the Southeast University and also distinguished adjunct professor at the King Abdulaziz University, prior to which he was a Professor at Yunnan University from 1996 to 2000. He is the author or coauthor of more than 300 journal papers and five edited books. His research interests include nonlinear systems, neural networks, complex systems and complex networks, stability theory, and applied mathematics. Dr. Cao was an Associate Editor of the IEEE Transactions on Neural Networks, Journal of the Franklin Institute and Neurocomputing. He is an Associate Editor of the IEEE Transactions on Cybernetics, Differential Equations and Dynamical Systems, Mathematics and Computers in Simulation, and Neural Networks. Dr. Cao is a Reviewer of Mathematical Reviews and Zentralblatt-Math. He is a ISI Highly-Cited Researcher in Mathematics, Computer Science and Engineering (Thomson Reuters).