Pollen-based evidence of extreme drought during the last Glacial (32.6 – 9.0 ka) in coastal southern California

Linda E. Heusser
Lamont Doherty Earth Observatory of Columbia University, Palisades, NY 10601 USA

Matthew E. Kirby
California State University, Fullerton, Department of Geological Sciences, Fullerton, CA 92834 USA

Jonathan E. Nichols
Lamont Doherty Earth Observatory of Columbia University, Palisades, NY 10601 USA

ABSTRACT

High resolution pollen analyses of sediment core LEDC10-1 from Lake Elsinore yield the first, well-dated terrestrial record of sub-centennial-scale ecologic change in coastal southern California between ~32– 9 ka. In the Lake Elsinore watershed, the initial, mesic montane conifer forests dominated by Pinus, and Cupressaceae with trace amounts of Abies and Picea were replaced by a sequence of multiple, extended severe mega-droughts between ~27.5– ~25.5 ka, in which halophytic and xerophytic herbs and shrubs occupied an ephemeral lake. This prolonged and extended dry interval, which corresponds with warm waters offshore, imply strengthening of the North Pacific High and persistent below-average winter precipitation. The subsequent, contrasting monotonic occurrence of montane conifers reflects little variation in cold, mesic

© 2015. This manuscript version is made available under the Elsevier user license
http://www.elsevier.com/open-access/userlicense/1.0/
climatic until ~15 ka. Postglacial development of *Quercus* woodland and chaparral mark the return to more xeric, warmer conditions at this time. A brief reversal at ~13.1 – ~12.1 ka, as reflected by an expansion of *Pinus*, is correlative with the Younger Dryas and interrupts development of warm, postglacial climate. Subsequent gradual expansion of xeric vegetation post – Younger Dryas denotes the establishment of a winter hydroclimate regime in coastal southern California that is more similar to modern conditions. Pollen-based reconstructions of temperature and precipitation at Lake Elsinore are generally correlativewith pollen-based paleoclimatic reconstructions and foraminfera-based sea surface temperatures from Santa Barbara Basin in marine core ODP 893. The conspicuous absence of the ~27.5– ~25.5 kaglacial “mega-drought” in the Santa Barbara Basin pollen record highlights the sensitivity of Lake Elsinore to hydroclimate change, and thus, the importance of this new record that indicates that mega-drought can occur during the full glacial when climatic boundary conditions and forcings differed substantially from the present.

1. Introduction

Ecologically and economically damaging extreme weather events such as drought and winter storms characterize the Mediterranean climate of coastal southern California (CSC). The present “Great Drought” in California is extreme but not in terms of duration, especially for CSC where multi-decadal to centennial scale drought are inferred from the paleoclimatic record (Cook et al., 2004; Kirby et al., 2014). Predicted future changes in mean annual precipitation and temperature seasonality is likely to impact vegetation and associated ecosystems of the California Floristic Biodiversity Hotspot, wherein Lake Elsinore (LE) is located (McDowell,
Regional-scale shifts in vegetation are already occurring (Myers et al., 2000; Brooks et al., 2002). Future water deficits are projected to result in widespread changes in the distribution and composition of CSC ecosystems – the reduction and displacement of oak woodlands northwards and/or to higher elevations (Kueppers et al., 2005; Sork et al., 2010; McLaughlin and Zavaleta, 2012). Movement to higher elevations may mean southward to the coastal mountains (Loarie et al., 2008). The key to predicting the future response of CSC ecosystems to climate change is a paleoperspective – i.e., past reconstructions of vegetation and its response to climatic change. Unfortunately for CSC, how vegetation responded to past episodes of extended drought and/or wetness, especially during the last Glacial, is poorly known.

Existing pollen-based reconstructions of glacial CSC climate vary in detail and temporal resolution. During the last interglacial (MIS 5e), pollen deposited in Santa Barbara Basin (SBB) (ODP Hole 893A) from drought-adapted, Mediterranean type vegetation was comparable to, or even more expansive, than present (Heusser, 1995; Friddell et al., 2002). A short, mid-Wisconsinan pollen record in an organic deposit at Diamond Lake (~30 km east from Lake Elsinore) records expansion of more mesic montane ecosystems to lower elevations during near-peak glacial conditions (Anderson et al., 2002). Holocene pollen records from CSC are sparse and are generally low resolution (> centennial scale (Heusser, 1978; Davis, 1992; Cole and Liu, 1994; Heusser and Sirocko, 1997; Dingemans et al., 2014). An archival exception is a recent pollen reconstruction from SBB indicating a significant vegetative response to the drier-than-average Medieval Climate Anomaly (800-1300) and its transition into the early stages of the wetter-than-average Little Ice Age (~1300-1400) (Heusser et al., 2014).

Here, we present the first continuous, multi-decadal resolution pollen assemblage record from CSC (Lake Elsinore) spanning the late last glacial (32-9 ka). We compare this record to
nearby Santa Barbara Basin sea surface temperatures (SST) and its pollen data to examine marine – terrestrial similarities and differences.

2. Background

2.1 Setting

Originally called *Lago Grande*, LE is the largest (~15 km²) natural lake in southern California (Fig. 1). Occupying a pull-apart basin ~380 masl in the Peninsular Range, the lake is a shallow (~3 – 13 m mean depth) but generally permanent lake, bordered by the Elsinore fault, one of the principal strands of the San Andreas fault system (Fletcher et al., 2006). The main water source for the lake is the small, ~1240 km², drainage basin of the San Jacinto River, supplemented by direct runoff from the Elsinore Mountains that rise abruptly ~610 m above the western edge of the lake (Mann, 1951; Lichvar, 2003; Lawson, 2007). Runoff, which is positively correlated with precipitation, is winter dominated and highly variable. During the last ~200 years, the lake has desiccated four times during extreme droughts and has briefly overflowed 20 times through a natural outlet ~3 m above mean maximum depth (Lynch, 1931; Kirby et al., 2007).

The hydrology of LE reflects seasonal changes in annual precipitation/evaporation caused by broad changes in atmospheric circulation and oceanographic variability. The strength and position of the NE Pacific High pressure system (NEPH) redirects storm tracks to the north during the spring and summer and further south into California during the winter (Namias and Cayan, 1981; Cayan and Peterson, 1989; Seager et al., 2005; Cook et al., 2011). These large-scale atmospheric patterns, which control the average position of the polar front, affect the strength and character of the California Current System (CCS) and cause strong southward flow in
summer and northward flow with cooler sea surface temperatures (SST) in winter (Hendy et al., 2002; Barron et al., 2003). A stronger polar jet produces increased storms in winter. During winter, as the eastern Pacific subtropical high weakens, polar storm systems shift southward and produce over 80% of the annual precipitation (Cayan, 1984). In summer, northerly winds around the northeast Pacific subtropical high block northern storm tracks, cool SSTs, and produce persistent coastal upwelling. The subtropical North American Monsoon (NAM) provides limited summer precipitation but negligible to the lake’s annual hydrologic budget (Adams and Comrie, 1997; Higgins et al., 1997). Tropical cyclones originating in the eastern Pacific Ocean contribute less than 20% of the total late-summer to early-fall precipitation and, like the monsoon, presently make no difference in the lake’s annual hydrologic budget (Corbosiero et al., 2009; Ritchie et al., 2010). The semi-permanent high produces temperature inversions that trap air near the surface. Below the inversion layer, cool maritime air flows up the coastal slopes to ~400 m and condenses into fog and fog-drip that averages ~5.74 cm/month in May and June on the seaward side and ~2.41 cm/month on the leeward side (Vogl, 1973). Inter-annual winter precipitation variability is modulated by ocean-atmosphere conditions in the tropical and extra-tropical Pacific such as the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) (Castello and Shelton, 2004; Hanson et al., 2006; Kirby et al., 2010, 2014). During El Niño years, drainage basins in the southwestern United States are more likely to experience higher stream flow and sediment flux than during La Niña years (Inman and Jenkins, 1999; Farnsworth and Milliman, 2008; Warrick and Mertes, 2009; Gray et al., 2014).

High pressure over the North Pacific in summer and intensification of the Aleutian low in winter are reflected in seasonal contrasts of warm dry summer and cold wet winters that are moderated by coastal waters. Modern marine and terrestrial temperature gradients along the
California coast are remarkably similar. Average annual SSTs have a north to south gradient, ranging from 12°C to 16°C, and average annual temperatures directly onshore are closely comparable, ranging from 11°C at 42° N to 17°C at 32° N (Lyle et al., 2010). Mean July coastal temperatures reflect local sea surface temperatures (Minnich, 2007). Average annual coastal precipitation also has a very strong north-south gradient, ranging from ~1700mm to <260mm.

Strong orographic temperature and precipitation gradients characterize the LE region. Topographic relief of this area is between 380 meters at LE and up to 3,302 meters in the San Jacinto Mountains (Mann, 1951). In the Santa Ana Mountains, temperature depression averages ~2.1°C for each 305 m increase of elevation (Vogel, 1973). Average annual temperatures decrease from ~17°C at LE (~380 masl) to ~8°C on montane peaks. Average annual precipitation increases from ~300 mm at LE to 680 mm on Santiago Peak (1,734 masl), where winter precipitation occasionally occurs as snow (Vogl, 1973). Above ~1,000 m in the San Jacinto Mountains, the prevailing westerlies carry marine air which also moderates summer temperatures and produces fog and fog-drip many nights of the year (Vogl, 1972). Mountains act as “sky islands”, providing cooler temperatures for isolated ecosystems, and as “water towers” in storing and providing water to downstream ecosystems (Anderson and Goulden, 2011).

2.2 Modern vegetation

Elevational gradients in precipitation are reflected in step-like changes in the natural vegetation groups, as vegetation cover in this semi-arid climate is closely related to mean annual evaporative fraction (Anderson and Goulden, 2011). Vegetation around LE and on the low-elevation (~400m) flat /gentle hilly topography includes a mosaic of alluvial scrub, mixed chaparral (Ceanothus, Adenostoma, Q. dumosa, Q. wislizenii) and scrub oak woodland (Q.
agrifolia, Poaceae), and California sage scrub (Artemisia californica, Salvia, Eriogonum), generally require ~300 mm of annual precipitation. Above ~1300-1500m, scrub-shrub merges with oak (Q. chrysolepis, Q. kelloggii) and mixed evergreen oak-pine woodlands (Q. agrifolia, Q. kelloggii, Pinus coulteri) which require ~625 - 650 mm precipitation and mean annual temperature of 12° - ~15° C. Montane coniferous forest (P. coulteri, P. jeffreyi, P. ponderosa, Calocedrus decurrens, Cupressus forbesii, Pseudotsuga macrocarpa, and Abies concolor) occurs above ~1850m. Trans-montane slopes support open Piñon and juniper woodlands (P. coulteri – Juniperus californica), a disjunct, westernmost extension of Great Basin and Colorado vegetation (Vasek and Thorne, 1977).

Plant communities that may occur at various elevations include riparian Populus/Platanus woodland and montane Q. agrifolia/Alnus forest, fresh-water marshes (Carex, Cyperus, Rorippa, Typha, Potamogeton), ephemeral vernal pools, alkaline flats, alluvial fans, playas, and fine alluvial soils (Atriplex, and other salt-tolerant plants of which the Amaranthaceae are the most numerous) (Vasek, 1966; Barbour and Major, 1977; Vasek and Thorne, 1977; Davis, 1999; Anderson and Koehler, 2003; Lichvar, et al., 2003; Barbour, 2005; Clarke, et al., 2007). The upslope vegetation zonation and climate gradients are captured by modern pollen assemblages from surficial samples taken in the cismontane region of southern California. In pollen assemblages from the San Jacinto Mountains, herbs dominate the lowland (<775m), chaparral (Rosaceae with Quercus spp), occurs up to 1545m interspersed with oak-conifer woodlands. The higher elevation chaparral-conifer ecotone (Q. kelloggii and P. coulteri) is succeeded upslope by lower montane mixed conifer forests that include Quercus, Pinus, and Cupressaceae (Vasek and Thorne, 1977). P. contorta is prominent in pollen assemblages from the upper montane forest (Anderson and Koehler, 2003). Surface pollen assemblages from the
Peninsular and Transverse Ranges of southern California show a similar altitudinal differentiation (Wahl, 2003a, b). Foothill and lower montane assemblages are dominated by *Quercus*, *Pinus* and Cupressaceae (*Juniperus*, *Calocedrus*) increase as elevation increases. *Pinus*, along with small amounts of *Abies*, occurs in the montane zone.

Our use of modern pollen/vegetation relationships in the San Jacinto drainage basin and the cismontane region as analogues for vegetation/climatic reconstructions from pollen deposited in LE is also based on observations that fluvial transport of pollen is the primary source of pollen deposited in lakes, and that pollen in rivers reflects the various ecosystems of the drainage basins (Bonny, 1978; Brown, 2007; Zhu, et al., 2003). Reconnaissance studies of pollen in sediment samples from the San Jacinto River between 610 m – 1630 m, and from the surface (~400 m) of LE (Byrne, et al., 2004;) show the altitudinal zonation of montane conifers and lowland shrubs and herbs. Large lakes receive a large absolute input of pollen from regional sources via fluvial input (Matthias, 2014). Lesser amounts of pollen deposited in LE may be derived from emergent and submergent littoral vegetation. Some local aeolian pollen transport is likely; however, long-distance transport in a montane environment is more equivocal (Solomon, et al, 1982; McLennan and Mathewes, 1984; Jackson, 1999).

Our objective is to use high-resolution (decadal scale sampling) pollen analysis from a sediment core taken in Lake Elsinore to reconstruct past vegetation between ~32 and ~9 ka. Our goal is to develop a paleo-perspective of coupled ecologic – hydrologic dynamics that captures the range of variability from the last Glacial through the early Holocene for a better understanding of portending climate change and its potential ecologic consequences.

3. Methods
3.1 Core location and acquisition

Core LEDC10-1 (33°40’N; 117°21’W, 376 masl) was extracted from ~9m to ~30m below the sediment/water interface. Each drive of the hollow stemmed, lined auger coring system was 0.61m. Recovery was ~90%. Initial data spanning 9 – 19 ka are described in Kirby et al. (2013).

3.2 Pollen methods

Sediment samples (~5cc) from core LEDC10-1, which were taken at ~10cm intervals between 10.37 m and 30.05 m, were processed using standard procedures (Heusser and Stock, 1984). Known quantities of Lycopodium spores were added to each sample in order to calculate pollen concentration and pollen flux. Pollen recovery varied; however, in ≥270 samples, 300 pollen grains (upland, wetland, and aquatic) and spores were identified under a light microscope at 400x. Picea, which is absent from the region today, was included in the pollen sum. Reworked pollen (identified on the basis of pollen morphology) was rare. Pollen identifications were based on reference collections of modern pollen and published references. Identification varied taxonomically - from generic to familial levels - due to factors limiting identification of pollen of plant taxa, such as for the Cupressaceae. Inaperturate pollen grains that may have been produced by C. decurrens, Juniperus (J. californica, or J. osteosperma), and/or Cupressus are here referred to as Cupressaceae (Munz, 1974). We note that Pinaceae, which were all identified as diplyxolon type, may represent several species that range from chaparral and foothill woodland (P. attenuata, P. coulteri) to montane forest (P. ponderosa). In our summary pollen diagram, Abies/Picea and Rosaceae/ Rhamnaceae (Adenostoma, Cercocarpus, Ceanothus) are plotted together. Artemisia (sage) was separated from other Asteraceae. Obligate wetland taxa (Typha, Potamogeton, Sparganium, Myriophyllum, and Isoetes) are included in the
pollen and spore sum. Pollen and spores were encountered less frequently, which are not shown in the summary pollen diagram, are included in calculating the pollen sum and relative abundance of taxa shown in the summary pollen diagram. Plant nomenclature follows (Munz, 1974). Pollen data will be available from NAPD. Pollen flux (grains/cm²/yr) quantifies the rate of pollen deposition in LE over the time of record.

3.2 Age model

Age control is based on 24AMS radiocarbon dates from charcoal, wood, and/or seeds (Table 1). An age model was developed using the Bacon 2.2 age-depth modeling program (Fig. 2). Infrared Stimulated Luminescence (IRSL) signals from single grains of K-feldspar from two sandy units were used to assess a section of the core where datable organic material was poorly preserved. This independent analysis supports our age model (Wu et al., in review).

3.3 Statistical analyses

Principal components (PC) analysis and cluster analysis is used to reduce the dimensionality of the pollen percent data and to identify the underlying relevant structure. The R Project statistical computing environment (R core team, 2014) was used for all statistical analyses. PC analysis of pollen percent data was performed by singular value decomposition using the function prcomp(.). We also performed an unconstrained cluster analysis by Ward’s method on a matrix of Euclidean distance.

Cluster analysis separated the pollen samples into three distinct groups, assigned arbitrary numbers 1 through 3. The three groups determined by cluster analysis are also apparent in PC space (Fig. 3). The biplot shows the samples plotted by the PC axis 1 and 2 scores (Fig. 3). The colors and shapes of the points on this plot correspond with the group assignments from the cluster analysis. Group 3, identified with blue X, is comprised of samples dominated by
Cupressaceae pollen. This group is separated from the other two by PC axis 1 scores, as PC1 is most closely related to the percent Cupressaceae pollen. The other two groups are comprised of samples dominated by Asteraceae and Amaranthacea pollen (group 3, red triangles) or Quercus and Pinus pollen (group 2, green +) and are separated by their PC2 axis scores. The groupings identified by cluster analysis and Principal Components Analysis support the Pollen Zones assigned by visual inspection of the pollen percent data (Fig. 5).

4. Pollen Results

The relative abundance of the diagnostic taxa LEDC10-1 core are summarized in Figure 4. The most striking aspect of the pollen record is the contrast between the high-frequency variations in herbaceous vegetation that bracket the prolonged, monotonous dominance of Juniper and Pinus.

PZI (30.0 m – 28.25 m; 32.6 – 30.5 ka)

A brief peak in Pinus (28%) immediately followed by Cupressaceae peak (32%) initiates the base of the core (Fig. 4). Pinus values drop rapidly and remain low, in contrast to Cupressaceae, which averages 50% and reaches an acme (70%) at the end of the zone, as does Typha (~40%). Low values of Abies and Picea are sporadically present. Poaceae and Cyperaceae gradually increase, whereas Amaranthacea, Asteraceae gradually increase and peak in the middle of PZI. The peaks in Typha, Asteraceae and Amaranthacea are brief (≤ 300 yr). Eriogonum remains consistently low (≤ 5%).

PZII (28.25 m – 25.71 m; 30.5 – 27.7 ka)

Cupressaceae ranges between 20-40%. Pinus ramps down to ≤ 10% as Amaranthacea
increase. Although minimal, *Abies* and *Picea* are best represented in this zone. *Asteraceae* values peak (~20%) in the middle of the zone. *Artemisia* and *Poaceae* remain as in PZI, while *Cyperaceae* declines and then recovers. Excluding *Typha*, wetland and aquatic taxa (*Potamogeton, Myriophyllum, Sagittaria, Rorippa, Azolla, Isoetes*) are only sporadically present.

PZIII (25.71 m – 23.5 m; 27.7 – 25.2 ka)

Cupressaceae decreases from ~40% at the base of the zone to ~5%. *Pinus* drops to <5%). The modest increase in *Quercus* (~8%) in this zone is not exceeded until PZVI. Two Amaranthaceae peaks (~50% at ~25.3 and 41% at 23.5 ka) bracket an interval that encloses *Asteraceae* maxima (53% at 26.6 ka and ~45% at 25.6 ka). Except for one spike at ~26.6 ka, *Cyperaceae* pollen forms <~15% of the pollen sum, as does *Poaceae*, which begins to increase at the end of PZ III. The abrupt increase in *Pinus* at the base of this zone initiates a series of periodic fluctuations that offset lower amplitude oscillations as *Cupressus* gradually increases, high abundance of *Cupressus* (mean = 43%). *Pinus* oscillates down to <5% between ~26.5 ka and 25.3 ka.

PZIV (23.51 m – 21.4 m; 25.2 – 22.5 ka)

The abrupt increase in *Pinus* 54% at the base of this zone initiates downward-ramping oscillations to ~20% that are mirrored in the low amplitude oscillations in the rise of *Cupressaceae* from ~10% to ~59%. A brief rise in *Poaceae* is followed by an extended increase in *Cyperaceae*, reach their highest values in the core. *Alnus* peaks briefly in this zone. A marked increase in *Typha* (~25%) briefly punctuates the *Cyperaceae* rise. Amaranthaceae and *Asteraceae* are minimal (~5%). *Azolla*, *Rorippa*, *Sagittaria*, *Potamogeton* are present sporadically. *Isoetes* (~5%) occurs at the base of the zone and *Myriophyllum* increases to 15% at 23.4 ka and to 10% at...
22.8 ka.

PZV(21.41 m – 17.5 m; 22.5 – 16.3 ka)

The predominance of Cupressaceae (Σ 50%) is punctuated by periodic oscillations in *Pinus* (Σ 25%). *Quercus* increases slightly in the middle of the zone. Abundance of herbaceous and shrub taxa, which remain comparable to the low levels of the preceding zone, show muted oscillations. Wetland taxa (1%) are rarely present.

PZVI(17.5 m – 13.5 m; 16.3 – 10.4 ka)

The rise of *Quercus* to ~39%, the rapid decline of Cupressaceae to minimal values (≤1%), and a sustained increase in Rosaceae/Rhamnaceae (>15%) distinguish this zone from the rest of the core. Escalating from <5% at the beginning of this zone to ~39% at ~13.2 ka, *Quercus* gradually ramps back to 15% at 10.8 ka. Asteraceae, Poaceae, Cyperaceae (comparable to values in PZIII) show a substantial increase. *Typha* and *Alnus* are continuously present in low amounts throughout the zone. *Pinus*, on the other hand, continues to oscillate at values maintained through most of the record, with the exception of PZIII and the latter part of PZI.

PZVII(13.5 m – 10.4 m; 10.4 – 9.0 ka)

The dominance of Asteraceae, the resurgence of Amaranthaceae and Poaceae characterize this zone. Asteraceae varies from ~30% to ~50% between ~10.77 - ~8.89 ka. The relative abundance of Amaranthaceae escalates to 30% at the top of the core; the relative abundance of *Quercus* falls to background levels of <5%.

Principal components analysis distills the essence of pollen and spore data from core
LEDC10-1 by reducing its dimensionality (Fig. 5). The importance of Cupressaceae in PZ I, II, IV and V is confirmed by high flux of Cupressaceae pollen in these zones. In PZ III, and PZ VII, positive PC axis 2 scores highlight the prominence of Asteraceae and Amaranthaceae. The inverse relationship between PC axis 2 scores and pollen flux, emphasize the role of halophytes and xerophytes in PZ II, III, VI, and VIII. High values of Quercus flux confirm the prominence of Quercus (high negative scores of PC2) at the beginning of the deglacial (~14,400). The rapid decrease in Quercus flux is matched by decreasing negative values of PC 2. The striking minima of Asteraceae and Amaranthaceaeflux (PZ III and VII) contrasts with the prominence of these herbaceous taxa (high positive loadings) in PC2.

5. Discussion

5.1 Vegetation change between 32.6 and 9.0 ka

PZ I (32.6 – 30.5 ka)

Cupressaceae with lesser amounts of Pinus, dominated the LE drainage from ~32.6 – 30.5 ka (Fig. 4). Montane woodland and forests may well have extended close to the shores of the lake. The assemblage suggests cool, wet conditions. It is interesting to note that Picea, which is no longer present in the region, occurs in trace amounts. Outliers of Picea sitchensis now occur on the California coast ~ 300 km to the north where average annual temperatures and precipitation are ~3°C lower and ~800 mm higher than Lake Elsinore. Components of chaparral/foothill woodland (Rosacea/Rhamnaceae and Quercus) were also present. A subsequent, rapid decrease in Pinus suggests increasing summer drought, as Pinus is less drought-tolerant than
Cupressaceae (Linton et al., 1998; Wilson et al., 2008). This is supported by a gradual coarsening of the clayey silts. Seasonal drought is also inferred from the expansion of low scrub (Asteraceae) and of halophytes (Amaranthaceae), plants that colonize ephemeral, desert-like sites that become dry in summer (Branson, et al., 1967; Davis, 1999; Clarke et al., 2007). The expansion of emergent and submersent shoreline vegetation (Cyperaceae, Poaceae, Potamageton) also suggests overall regression of the lake in this zone. Abrupt drops in lake levels are implied by rapid increases in herbaceous vegetation (tules/cattail marshes: Asteraceae, Amaranthaceae, and Typha) closer to the lake depocenter ~31–~30 ka. Pollen flux (grains/cm²/yr) in the clayey silts is high (Fig. 5). This is likely a function of sedimentation (hydrodynamically, pollen grains are approximately the same size as silt and clay), and of enhanced preservation in organic-rich silts and clays (Sangster and Dale, 1961; Tschudy, 1969).

PZ II (30.5 – 27.7 ka)

A step-like decrease in Cupressaceae abundance and an abrupt decrease in total flux to minimal values occurred between ~30.5 – 27.7 ka) (Fig. 4-5). The decrease in Cupressaceae, the substantial increases in Pinus, and the presence of montane taxa (Picea and Abies) are interpreted as evidence of low annual temperatures. Fluctuations in Cupressaceae and Pinus may reflect variations in precipitation in the Lake Elsinore watershed. Increased summer drought is suggested by the increasing prominence of Amaranthaceae and Asteraceae (common components of seasonally-dry, ephemeral sites and scrub) (Koehler, et al, 2005).

PZ III (27.7 – 25.2 ka)

In this Zone, repeated high-frequency oscillations in the relative abundance and total flux of
halophytic and xerophytelittoral vegetation (Cluster 1, Amaranthaceae and Asteraceae) imply lengthy intervals in which the lake regressed and the shoreline prograded basinward, allowing salt- and drought-tolerant vegetation to expand periodically around and onto the former lake bed during persistent, extremewinter (and summer)droughts (Davis, 1999)(Fig 4,5). Minimal relative abundance of montane conifers (Cupressaceae and Pinus) also suggests intervals of decreased effective moisture in the San Jacinto River watershed. The substantial increase in xerophytic and halophytic vegetation is consistent with growth a sandy substrate (Fig. 5). Minimal total pollen flux (<81,00 grains/cm²/yr) is consistent with oxidation and degradation of pollen deposited on a coarse, sandy substrate (Solomon, et al., 1982; Fall, 1987; Campbell, 1999; Davis, 1999; Lebreton, et al., 2012). The relative abundance of sand, which reached values as high as 80%, was likely formed by a prograding littoral zone as lake level regressed (Wu et al., in review).

It is possible that lake level regression and sand deposition is also related to tectonic activity on the Elsinore and nearby San Jacinto fault zones. One main shock has occurred along the Elsinore fault and five main shocks occurred along the San Jacinto fault zone during historic time (Wyss et al., 2000). Over the past 40 ka, the mean horizontal slip on the Elsinore fault rate is ~1.6 mm/yr (Fletcher et al., 2011). Faulting is unlikely to account for more than 1-2 m of fault-generated lake base level change; whereas, hydrologically-forced lake base level change of up to 13 m has been noted in the historical record (Vaughan et al., 1999; Kirby et al., 2004). Moreover, the minimal relative abundance of montane conifers Cupressaceae and Pinus) correlative to the sandy unit cannot be explained reasonably by local tectonic activity.

Based on limited vertical displacement along the Elsinore fault and the altered montane contribution correlative to the sandy unit, we favor the climatic interpretation that PZ III
represents a protracted interval of below average winter precipitation and annual drought.

PZ IV (25.3 – 22.5 ka)

Between 25.3 – 22.5ka, Cupressaceae were the major component of the montane coniferous woodland that surrounded LE. The abundance and high flux rate of Cupressaceae- and *Pinus*-dominated pollen deposited in Lake Elsinore indicates the expansion of montane forests close to the lake, which would imply treeline lowering >1000m and estimated temperature depression on the order of ~11°C (Anderson and Koehler, 2003). The minimal amount of *Quercus* and Rosaceae/Rhamnaceae, may have been derived from a limited area of oak scrub/chaparral that bordered the shore. Relative absence of Asteraceae, Amaranthaceae, and submergent vegetation implies lake levels were higher than in PZ III. Initially, wetland composed of *Typha* and Cyperaceae grew near the core site. As the lake level transgressed, marshland decreased and shallow-water aquatics (*Myriophyllum*) developed. The pulsating increase in Cupressaceae (PC 1) and correlative decrease in *Pinus* may reflect increased precipitation and/or decreased evapotranspiration due to lower summer and winter temperatures. The abrupt change in relative abundance and flux of pollen from drought-adapted vegetation to emergent and submergent aquatic vegetation corresponds temporally with the correlative change in the depositional environment – an abrupt shift from an organic-poor sandy silt/silty sand (shallow water) to an organic-rich, poorly to well-laminated clayey silt (deeper water) (Kirby et al., in preparation) (Fig. 5).

PZ V (22.5 – 14.4 ka)

Cupressaceae-dominated montane woodlands and forest apparently covered much of the
San Jacinto River catchment and the shores of LE between ~22.5 and ~14.4 ka. Subtle reduction in the prominence of Cupressaceae and increase in the relative proportion of *Pinus* continued through the last glacial maximum; however, the relative abundance and flux of Cupressaceae was always greater than that of *Pinus*. Although Cupressaceae-type pollen has been considered as over-represented in relation to *Pinus* (Hidalgo et al., 1999), in modern pollen assemblages from the cis-montane region of southern California, the relative proportions of *Pinus* and Cupressaceae are considered to be valid representatives of their presence in the landscape (Wahl, 2003b). In this zone, we interpret the overall decrease in the relative abundance of Cupressaceae and increase in *Pinus*, which is less tolerant of summer drought, as evidence of increasing effective soil moisture due to decreasing summer drought and/or increasing effective precipitation (Wells, 1979; Linton et al., 1998; Mueller et al., 2005; Minnich, 2007; Willson et al., 2008). At no time during this 8.1 ka interval does the vegetation indicate significant drought. High lake levels during the LGM are inferred from the very low amount of littoral-zone pollen and the high rate of conifer pollen deposited in LE. The absence of littoral zone vegetation may reflect increased precipitation/runoff, which caused high lake levels to rise above the natural outlet, flooding and destroying littoral vegetation. We posit that the high flux of pollen deposited annually in this zone likely reflect increased precipitation and runoff in the LE watershed that also resulted in rapid transport and deposition of pollen and other silt and clay size particles in LE (Fig. 5).

PZ VI (14.4 – 10.8 ka)

The deglacial (~14.4 – 10.8 ka) is distinguished by the prominence of *Quercus* abundance and flux (Fig. 5), the sudden demise of Cupressaceae, and the increased presence of chaparral
taxa (Rosaceae/Rhamnaceae). The relative abundance of oak woodland and chaparral deposited in LE approaches recent values (Byrne et al., 2004). In sharp contrast to the preceding relatively low-amplitude variation in basically two pollen types (Cupressaceae and Pinus), the dynamic deglacial pollen record consists of large-amplitude *Quercus* and *Pinus*-dominated oscillations, accompanied by a diversity of arboreal and nonarboreal pollen types. The initial rise of *Quercus* (~14.5 – 13.1 ka) corresponds with the Bølling-Allerød warming, and the subsequent *Pinus* peak corresponds with Younger Dryas cooling (~13.1 – ~12.1 ka) (Kirby et al., 2013). The stepwise decline in the montane conifer Cupressaceae and the increase in *Quercus* woodland implies overall higher summer temperatures. The abrupt decrease in Cupressaceae and *Pinus* flux at the beginning of this zone may reflect a substantial decrease in precipitation in the LE watershed. The overall reduction in pollen flux undoubtedly reflects oxidation of pollen in the overall shallower lake and its now well-mixed, more oxic profundal zone (Sangster, 1961; Bryant et al., 1994; Kirby et al., 2005, 2013) (Fig. 5).

Episodic variations in herbaceous (Asteraceae, Rosacea/Rhamnaceae), emergent (Cyperaceae, Poaceae, *Typha*), and aquatic (*Potomageton*) vegetation imply shorelines close to the depocenter - a shallowing lake reflecting higher summer temperatures and/or decreased precipitation/runoff (Bryant et al., 1994; Davis, 1999; MacDonald et al., 2008; Kirby et al., 2005, 2013). The relatively high carbonate content of the sediment, which is regarded as a proxy for warmer epilimnion summer temperature and decreased water depth, supports this interpretation (Kirby et al., 2013).

PZ VII (10.8 – 9.0 ka)
We interpret the abundance of pollen from halophytic vegetation (Amaranthaceae) and semi-arid scrub (Asteraceae) as evidence of increased summer drought between ~10.8 and ~9.0 ka. The very low total flux rate may reflect significantly reduced precipitation and runoff (Fig. 5). This early Holocene herbaceous pollen assemblage resembles pollen assemblages deposited between 27.5 – 25.3 ka, a lengthy interval that we termed a glacial megadrought.

5.2 Coastal southern California: Lake Elsinore and Santa Barbara Basin pollen records

To develop a regional overview of vegetation change in CSC between ~32 ka and ~9 ka, we compare the pollen record from Lake Elsinore (this paper) with the pollen record from marine core ODP893A in SBB (Heusser, 1995). At present, there are no other continuous, high resolution records (~88 years between samples in Lake Elsinore and ~218 years between samples in ODP893A) of terrestrial ecosystems in coastal southwest North America. Although both localities (LE and SBB) are surrounded by summer dry/winter wet Mediterranean plant communities that range from montane forests to lowland chaparral, there are significant differences between the source of the pollen and the depositional sites. Pollen assemblages deposited in LE, a pull apart basin, integrate pollen from vegetation of the San Jacinto drainage (~1240 km²), including the broad (40 km), rolling hills of the San Jacinto Valley, as well as local runoff from the Elsinore Mountains. Pollen assemblages deposited in SBB, a deep, anoxic basin, integrate the composition and seasonal pollen production of vegetation in the large watershed of the Santa Clara River (4100 km²) that drains the nearby Transverse Mountains and a narrow coastal plain (Heusser et al., 2014). Although average annual temperatures in LE and Santa Barbara (SB) are similar, LE lies ~40 km inland on the leeward side of the Elsinore Mountains where average summer temperatures are ~8°C higher than on the coast at SB. Average annual
precipitation in LE (~304 mm) is approximately half of precipitation in Santa Barbara (Vogl, 1972).

The similarity of the basic structure of the relative abundance of oak (*Quercus*) in both sites is striking (Fig. 6). *Quercus* values initially oscillate between 5-10% and subsequently level at minimal values between 25-15 ka. Rapid deglacial fluctuations during the deglacial may be correlative; however, the abrupt rise at ~13.5 to Holocene *Quercus* values in SBB apparently occurs ~ 1000 years after LE. This difference may reflect the usual age-model caveats (e.g. differences between oxygen isotope- and radiocarbon – based age-models) The postglacial decrease in Cupressaceae, the dominant taxon of both full-glacial records, also reflects an apparent 1000-year offset. A major difference between the early Cupressaceae records is the step-like decrease of Cupressaceae in LE. Relative abundance plunged from ~60% at the beginning of the record to ~10% at ~26 ka, and subsequently rose to maximum glacial values (~60%) at 23.2 ka. In SBB, however Cupressaceae varied within full-glacial values from the beginning of the record. In the early glacial record from LE (~32 – ~25 ka), repeated, high-frequency variation in the relative abundance of herbs (*Artemisia*, Amaranthaceae, and Asteraceae) differ markedly from the SBB low-frequency mode of herbal abundance that continued until ~13.5 ka. We suggest that the extended oscillations of pollen from halophytic and xerophytic vegetationreflect dynamic changes in the source and depositional environment –a seasonally-dry lake surrounded by semi-desert, rolling hills. The comparative absence of similar halophytic and xerophytic vegetation in the SBBrecord suggeststhat on the coast, increased effective moisturemay have been buffered by persistent onshore fog.

Although the mean relative abundance of *Pinus* pollen deposited in LE and SBB is surprisingly similar (*Pinus* pollen can be over-represented in marine sediments [Heusser and
Balsam, 1977), the basic trends in Pinus pollen abundance differ. In SBB, the relative amount of Pinus decreases overall from ~32 ka until the LGM, whereas in LE, Pinus abruptly decreases at 32ka, 30ka, and 25ka, and then gradually increases until ~15ka. In the LE Pinus record, the lengthy decrease from 14.8ka to 12ka contrasts with a correlative increase in Pinus at ODP893A. This may reflect the differential input of Quercus at the two sites.

Pollen data from LE and SBB provide a continuous, regional pattern of CSC vegetation and climate change from 32 ka to ~10 ka that is supported by other CSC paleoenvironmental reconstructions. Full glacial, cool, wet conditions have been inferred from the presence of montane vegetation at low elevations in Los Angeles and evidence of glaciation in the San Bernardino Mountains (Anderson, 2002; Owen et al., 2003; Coltrain et al., 2004; Ward, 2005). In nearby Diamond Valley, montane Juniperus expanded to lower elevations at ~41 ka (Anderson et al., 2002) and in southeastern California, Cupressaceae and Pinus dominated full-glacial sediment (Davis, 1999; Atwater, 1986). Analysis of Baldwin Lake sediments deposited between ~27 – ~20 ka are interpreted as evidence of lake regression and formation of a playa lake (Blazevic, et al., 2009). At Zaca Lake, ~50 km northeast of SBB, fluvial tufa deposits suggest increased precipitation, approximately at 11, 17, and 19 ka (Ibarra et al., 2015). Floral and lithologic evidence of glacial/postglacial evolution of cold, wet to warm, dry climates has been documented on the Channel Islands and at LE (Anderson et al., 2008, 2010; Kennett, 2008; Kirby et al., 2013). On the north coast of California and Oregon, cool wet glacial climates supported montane coniferous forests that were replaced by lowland Sequoia sempervirens (coastal redwood) and P. sitchensis rainforests after ~15 ka (Pisias, et al, 2001). Indrier regions inland, Quercus woodland expanded ~15 ka, as in LE.
5.3 Paleoclimate change in coastal southern California and offshore waters of the North Pacific

The interaction between atmospheric circulation (the Aleutian Low and North Pacific High) and northeast Pacific sea surface temperature produce climate variations that drive large-scale variations in the composition and distribution of terrestrial ecosystems in CSC (Namias and Cayan, 1981; Trenberth and Hurrell, 1994; Harrison, 2003; Diffenbaugh and Ashfaq, 2007). Strong correlations between marine and continental records from coastal northern California and Oregon have shown that the response time of the two regions to changes in millennial scale climate forcing is similar, and that oceanographic conditions on these time scales have a direct impact on coastal climates (Pisias et al., 2001).

In Figure 7, we compare the faunal response of the southern California margin with floral response onshore to climate variability between ~9 ka and ~32 ka. We use two planktonic foraminiferal assemblages in SBB that are associated with cool waters (Factor 1, sinistral *N. pachyderma* dominated), and with warm, stratified water (Factor 3, *G. bulloides, N.incompta* dominated). *N. pachyderma* is presently found in 6°–8°C subpolar waters; *N.incompta* is presently found in SB waters that range from 14°–17.5°C (Hendy, 2010).

We use floral assemblage PC1 from LE as a proxy for variations in effective moisture, which is a function of temperature and evaporation (Shinker and Bartlein, 2010). When effective moisture is high, there is little moisture stress on plants and precipitation and runoff are high. The converse is true when effective moisture (EM) is low. Positive values of floral assemblage PC1 indicate the abundance of upper, montane,Cupressaceae (juniper)-dominated woodlands, in which annual precipitation is ~1000 mm (Fig. 3). Negative values indicate abundant
Amaranthaceae-Asteraceae, halophytic and xerophytic vegetation of ephemeral playa lakes and vernal pools in which annual precipitation is ~500 mm (Thompson, et al., 1998; Wahl, 2003a, b). Temperature depression averages ~2.1°C for each 300-m increase of elevation in the San Jacinto Mountains (Vogl, 1972).

Between 32 and 27.7 ka, effective moisture decreases in a step-like pattern. A major drop in EM (29.5 – 28.9 ka) occurs immediately after a sharp decrease in the subarctic state of SBB waters. The triple sequence of effective moisture minima at 27.5 ka, 26.6 ka, and 25.5 ka, each lasting ~500 years, represent drought-like conditions that persist for over ~2000 years. A similar duration (500 yr) of drought is inferred from late Holocene sediments from Zaca Lake, located 50 km north from SBB (Kirby et al., 2014). This drought similarity indicates that our proposed glacial megadroughts are not without more recent analogs; moreover, it suggests that megadroughts are a feature during both glacial and interglacial conditions (Kirby et al., 2014). In SBB, during this terrestrial drought interval, a triple sequence of low values of the subarctic faunal factor generally correspond with low effective moisture onshore and with high values of the warm faunal factor. The gradual rise and sustained, monotonic high levels of effective moisture that continued until ~16.5 ka correspond with high values of the subarctic waters but they do not mirror the rapid and abrupt shifts in the subarctic and warm states of SBB. In like manner, the gradual, postglacial decrease in effective moisture corresponds with a series of step-like changes in SBB. We interpret the peak in effective moisture at ~12.5 ka, which corresponds with a comparable increase in the subarctic state and decrease in the warm state of surface waters in SBB, as clear evidence of the Younger Dryas climatic event.

The general correspondence between offshore (SBB) temperature and onshore (LE) effective moisture suggests a direct buffering of continental temperatures by the thermal inertia.
of coastal waters as well as a linked response to large-scale atmospheric reorganization over the north Pacific and coastal southwest United States (Herbert et al., 2001; Barron et al., 2003; Lyle et al., 2010, 2012; Pisias et al., 2001).

6. Conclusions

Pollen analysis of core LEDC10-1 from Lake Elsinore, California provides the first continuous, decadal-scale record of the response of CSC ecosystems to climate change from ~32 to ~9 ka. Mesic montane vegetation that initially dominated the site was replaced by high-frequency shifts to arid, herbaceous (Amaranthaceae, Asteraceae, Artemisia) vegetation that lasted from ~27.5 – ~25.5 ka – an unprecedented glacial megadrought. Minimal pollen flux at the same time reflects frequent, abrupt changes in the depositional environment likely associated with the rapid migration of the littoral zone; this also suggests persistent and sustained drought. Subsequent monotonic development of montane conifer forests (Cupressaceae with lesser amounts of Pinus), indicative of lower temperatures and increased precipitation, continued unabated until ~16 ka. Rapid fluctuations in Quercus and other semi-arid lowland vegetation characterize the late Glacial to Holocene transition. The late-glacial resurgence of drought-adapted vegetation and low values of pollen flux resemble conditions not unlike those of the Glacial megadroughts in Lake Elsinore between ~27.5 – ~25.5 ka, and of Holocene multi-century droughts in SBB and at Zaca Lake during the Medieval Climate Anomaly (Heusser, et al., 2014; Kirby, et al., 2014).

Comparisons between marine surface water conditions (planktonic fauna) and terrestrial conditions (pollen-based proxy of effective moisture) show broad scale similarities. Correspondence between major climatic events, such as the Younger Dryas and
Interstadials 2-5, suggest that nearby marine conditions may modulate the terrestrial response to climatic forcing.

The similarity of the broad patterns of terrestrial vegetation change that are reconstructed from Lake Elsinore and from Santa Barbara Basin (ODP Site 893) provide a regional synthesis of CSC vegetation change between ~32 – ~9 ka. However, there are significant differences. The extreme Glacial megadroughts that lasted from ~27.5 – ~25.5 ka inland at Lake Elsinore are not recorded by the pollen data from the Santa Barbara coast. The Lake Elsinore record apparently captures the response of semi-arid ecosystems to local edaphic and climatic change. The conspicuous absence of the ~27.5 – ~25.5 ka glacial “mega-drought” in the Santa Barbara Basin pollen record highlights the sensitivity of Lake Elsinore to hydroclimatic change, and thus, the importance of this new record. These results indicate that megadrought can occur even during the full glacial climatic boundary conditions and forcings.

Multi-century megadroughts in CSC occur in both Glacial and Interglacial conditions. The duration of these arid intervals exceed anything observed in the recent or tree-ring records for CSC (Cook, et al., 2004). As climate continues to change, might these megadroughts represent possible analogs for the future hydroclimatic state in CSC?

Acknowledgements:

The authors would like to thank the Editor and reviewer (J. Carrión and R. S. Anderson) for their help in developing this paper. This study was supported by U.S. National Science Foundation Grants 031511, 0731843, and 1203549 to MEK. Coring was supported by the American Chemical Society Petroleum Research Grant #4187-B8 to MEK. We thank Mr. Pat Kilroy (lake
manager), the City of Lake Elsinore, John Gregg and Gregg Drilling and Testing, Inc., Joe Holbrook, M.F.A. and the CSUF School of Theatre and Dance for recovering and opening the cores.

Figure Captions

Figure 1 Map of Southern California showing location of Lake Elsinore and ODP Site 893, Core LEDC10-01 (33°40'N; 117°21’W, 376 masl); ODP Hole 893A (34°17.25'N, 120°02.19'W, 576.5 mbsf), Zaca Lake, and the San Jacinto and Santa Anna Mountains. Inset shows location of study area in relation to the U.S.

Figure 2. Age model for LEDC10-1 produced by BACON 2.2 program, using age data shown in Table 1.

Figure 3. Principal Components (PC) Analysis of pollen data from Core LEDC10-01. Cluster 1 (red triangle), which includes Asteraceae, Amaranthaceae and Pinus, dominates pollen III and VIII. Cluster 2 (green +), composed of Quercus, dominates pollen zone VI. Cluster 3 (blue x), composed of Cupressaceae, dominates pollen zones I,II, IV, and V. PC1, and PC 2 explain 56% and 19% of the variance respectively.
Figure 4. The relative abundance of selected pollen taxa in Core LEDC10-01. Pollen zones (I-VII) were constructed using the results of cluster and PC analysis. Ages of dates used to construct the Age Model (Fig. 2, Table 1) are shown right of the Age scale.

Figure 5. Principal Components 1 and 2, pollen flux (log (grains/cm^2/yr), and sediment composition of Core LEDC10-01 plotted to age are shown with pollen zonation (I–VII). PC axis 1 is dominated by variability in Cupressaceae pollen. In PC axis 2, positive values indicate Asteraceae and Amaranthaceae dominance, while negative values indicate Quercus and Pinus pollen dominance (Colors and symbols of the clusters and pollen flux derive from Figure 3). The relative amount of sand, silt, and clay, and % carbonate are shown at the bottom of the figure.

Fig 6. Comparison of coastal southern California vegetation from four diagnostic pollen groups deposited in Lake Elsinore and in Santa Barbara Basin between 9 ka and ~33 ka. For east of comparison, the very high frequency fluctuations in Pinus are smoothed with a 3-point moving average. Amaranthaceae, Asteraceae are grouped together as Herbs.

Figure 7. South coastal California marine and terrestrial paleoclimate reconstructions from 10 ka-33 ka. Positive loadings of LE PCI indicate greater effective moisture (Seneviratne, et al., 2010). Positive loadings of SBB PC 3 indicate greater presence of warm, stratified waters. Positive loadings of SBBPC1 indicate the presence of sub-arctic waters in SBB (Hendy, 2010).

Table 1. Chronology for LEDC10-1.
REFERENCES

Byrne, R., Reidy, L., Kirby, M.E., et al., 2004. Changing Sedimentation Rates during the Last Three Centuries at Lake Elsinore, Riverside County, California. Regional Water Quality Board, Riverside, CA.

Hendy, I.L., 2010. The paleoclimatic response of the Southern Californian Margin to the rapid

Current during glacial maxima linked to climate change on land. Science 293, 71-76.

Heusser, L.E., 1995. Pollen stratigraphy and paleoecologic interpretation of the last 160 kyr from
Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program,
College Station, TX, pp. 265-279.

Research 7, 45-62.

drought during the Medieval Climate Anomaly and early Little Ice Age (AD 800-1600).

Heusser, L.E., Sirocko, F., 1997. Millennial pulsing of environmental change in southern
California from the past 24 k.y.: A record of Indo-Pacific ENSO events? Geology
(Boulder) 25, 243.

sediments and other sediments with low pollen density. Palynology 8, 225-227.

38, 296-300.

Higgins, R.W., Yao, Y., Wang, X.L., 1997. Influence of the North American monsoon system on
the U.S. summer precipitation regime. Journal of Climate 10, 2600-2622.

Figure 2

- **Age (cal. ka BP)**
- **Depth (cm)**

- **Green markers with probability distribution**
- **Red line**: mean age model
- **Black dotted line**: 95 percentile
- **Orange circles**: OSL dates with 2σ error
Principal Components Analysis

- PC1, 56% of Variance Explained
- PC2, 19% of Variance Explained

Clusters/Zones:
1: III, VII
2: VI
3: I, II, IV, V

Flora:
- Pinus
- Quercus
- Asteraceae
- Amaranthaceae
- Cupressaceae
Figure 5

PC Axis 1 Scores

Dry < WET

PC Axis 2 Scores

Clusters

1
2
3

log_{10}(\frac{grains}{cm^2 \cdot yr})

Age (ka)

Carbonate %

Percent

sand silt clay
Figure 6

Coastal Southwest CA Pollen

Age, cal. BP

Herbs

Cupressaceae

Pinus

Quercus

LEDC10-1

893A