Removal properties of human enteric viruses in a pilot-scale membrane bioreactor (MBR) process

Takayuki Miura¹, Satoshi Okabe¹, Yoshihito Nakahara²*, and Daisuke Sano¹*

Each author’s affiliation and mailing address:

¹ Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

² Aqua Technology Administration, Mitsubishi Rayon Co. Ltd., 1-1-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8251, Japan

Current affiliation

Wellthy Corporation, 4-8-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan

*Corresponding author

Address: Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan. Tel/fax: +81-11-706-7597, E-mail: dsano@eng.hokudai.ac.jp
Abstract

In order to evaluate removal properties of human enteric viruses from wastewater by a membrane bioreactor (MBR), influent, anoxic and oxic mixed liquor, and membrane effluent samples were collected in a pilot-scale anoxic-oxic MBR process for 16 months, and concentrations of enteroviruses, norovirus GII, and sapoviruses were determined by real-time PCR using murine norovirus as a process control. Mixed liquor samples were separated into liquid and solid phases by centrifugation, and viruses in the bulk solution and those associated with mixed liquor suspended solids (MLSS) were quantified. Enteroviruses, norovirus GII, and sapoviruses were detected in the influent throughout the sampling period (geometrical mean, 4.0, 3.1, and 4.4 log copies/mL, respectively). Enterovirus concentrations in the solid phase of mixed liquor were generally lower than those in the liquid phase, and the mean log reduction value between influent and anoxic mixed liquor was 0.40 log units. In contrast, norovirus GII and sapovirus concentrations in the solid phase were equal to or higher than those in the liquid phase, and higher log reduction values (1.3 and 1.1 log units, respectively) were observed between influent and anoxic mixed liquor. This suggested that enteroviruses were less associated with MLSS than norovirus GII and sapoviruses, resulting in lower enterovirus removal in the activated sludge process. Enteroviruses and norovirus GII were detected in the MBR effluent but sapoviruses were not in any effluent samples. When MLSS concentration was reduced to 50–60% of a normal operation level, passages of enteroviruses and norovirus GII through a PVDF microfiltration membrane were observed. Since rejection of viruses by the membrane was not related to trans-membrane pressure which was monitored as a parameter of membrane fouling, the results indicated that adsorption to MLSS plays an important role in virus removal by an MBR, and removal properties vary by viruses reflecting different adsorptive behavior to MLSS. Our observations suggested that sapoviruses are more associated with MLSS and removed more efficiently than enteroviruses and norovirus GII.
1. Introduction

A membrane bioreactor (MBR) is a promising key technical element for municipal or domestic wastewater reclamation with many advantages such as high quality effluent, compactness, and short start-up time. Wastewater effluent discharge is the major source of human enteric viruses detected in natural waterways (Ueki et al., 2005), and waterborne diseases caused by enteric viruses are serious concerns in both developed and developing countries worldwide (Arvelo et al., 2012; Giammanco et al., 2014). Therefore, virus removal in wastewater treatment processes continues to receive attention due to the epidemiologically significant fact that pathogenic viruses in wastewater are highly diverse (Lodder and de Roda Husman, 2005).

Noroviruses (NoVs) and sapoviruses (SaVs), members of the family *Caliciviridae*, are major etiological agents of acute viral gastroenteritis. They are genetically diverse, and NoV genogroup I (GI), GII, and GIV and SaV GI, GII, GIV, and GV infect humans. Their virions are noneveloped and composed of icosahedral capsid with the diameter of 27–40 nm and a linear, positive-sense, single-stranded RNA genome (Green, 2007). Enteroviruses (EVs) belong to the family *Picornaviridae* and include coxsackieviruses, echoviruses, polioviruses, and the numbered enteroviruses. Members of the *Picornaviridae* are noneveloped viruses with a 30-nm diameter icosahedral capsid and a linear, positive-sense, single-stranded RNA genome (Racaniello, 2007). Enterovirus 71 and coxsackieviruses A6 (CVA6) and A16 are the major causative agents of hand, foot, and mouth disease (HFMD), and a growing epidemic of CVA6 infections has been reported worldwide (Shimizu and Nakashima, 2014). Recently, numerous large outbreaks of HFMD have occurred in the Asia-Pacific region (Ji et al., 2012), and infectious diseases caused by EVs, as well
as NoVs and SaVs, are public health concerns. Removal mechanisms of enteric viruses in an MBR process have been investigated using bacteriophages as indicators in bench or pilot studies. Based on the variation of phage removal efficiencies observed in different MBRs, membrane pore size is considered to be one of the factors affecting phage removal in bench-scale MBRs (Wu et al., 2010). In a pilot-scale MBR that had been operated over a long period of time, however, differences in membrane pore size (0.04–0.2 μm) did not significantly affect removal of indigenous phages (Hirani et al., 2010). Removal of seeded phage MS2 was different from indigenous phages (Hirani et al., 2010), and association of phages with mixed liquor suspended solids (MLSS) and physically irreversible membrane fouling (gel layer) that can be removed by chemical cleaning affected the phage removal (Hirani et al., 2010; Marti et al., 2011). In bench studies, although significance of membrane fouling on phage removal has been demonstrated (Lu et al., 2013), phage concentration was efficiently reduced also in an activated sludge process (Wu et al., 2010). Phages adsorbed to activated sludge were not only removed as waste sludge but also degraded by biomass (Wu et al., 2010). Meanwhile, knowledge on human enteric virus removal in an MBR process is very limited. Variation of EV removal efficiency was different from bacteriophages in a one-year pilot study (Ottoson et al., 2006), and it is still not known that the factors that affect phage removal make similar contributions to human enteric virus removal, and why removal efficiencies vary by viruses.

Surface electrostatic charge plays a major role in viral adsorptive behavior (Michen and Graule, 2010). Coxsackieviruses and echoviruses, which are prevalent EVs in sewage and environmental water (Chen et al., 2008; Iwai et al., 2006; Zheng et al., 2013), have isoelectric points (pI) of 4.0–6.4 depending on types and strains, while NoVs and SaVs have pI of 5.5–6.0 (Michen and Graule, 2010; Wang et al., 2012). It has been demonstrated that EVs have different adsorptive behavior to activated sludge ranging from 67–99.8% adsorption (Gerba et al., 1980). In fact, different removal efficiencies have been reported for adenoviruses, EVs, NoVs, and SaVs in
full-scale MBR processes based on the monitoring studies up to 9 months (Kuo et al., 2010; Sima et al., 2011; Simmons et al., 2011). Consequently, we speculate that different interfacial characteristics of viruses cause different adsorptive behavior to MLSS, resulting in different virus removal properties in an MBR process. Understanding the virus removal properties will lead to an improved water quality management in wastewater treatment, and this must be elucidated.

In this study, we investigated removal properties of EVs, NoV GII, and SaVs in a pilot-scale anoxic-oxic (AO) MBR process treating real domestic wastewater over 16 months. We hypothesized that different adsorptive behavior of viruses to MLSS would result in the different removal properties in an AO MBR process. Thus, anoxic and oxic mixed liquor samples were collected, as well as influent and MBR effluent samples, and viruses in the bulk solution and those associated with MLSS were separately quantified by real-time PCR using murine norovirus (MNV) as a process control. Additionally, MLSS concentration was reduced to 50–60% of a normal operation level, and any change in virus removal performance was investigated. We also monitored trans-membrane pressure (TMP) as a parameter of membrane fouling and evaluated its contribution to enteric virus removal. Based on our observations, removal properties of EVs, NoV GII, and SaVs in an AO MBR process and their seasonal trends are discussed. This is the first study to investigate the removal properties of EVs, NoV GII, and SaVs in an MBR process for over a year in relation to virus association with MLSS.

2. Material and methods

2.1. Sample collection

Samples were collected from a pilot-scale anoxic-oxic (AO) membrane bioreactor (MBR) process treating a pre-screened real domestic wastewater (Figure 1). The total volume of the AO MBR process was 1.5 m³, and the oxic tank (0.75 m³) was equipped with a submerged hollow-fiber
PVDF membrane module with a nominal pore size of 0.4 μm. A total surface area of the membrane was 10 m². The membrane flux was set at 0.4–0.8 m/d with an intermittent suction of 7 min on and 1 min off. The hydraulic retention time in the whole process was 7.2 h, and the solid retention time (SRT) was 15 d. The mixed liquor suspended solids (MLSS) concentration in the oxic tank was maintained, and the excess sludge in the oxic tank was returned to the anoxic process at the return sludge recycle ratio of 200%. Wastewater samples (1 L each) were collected from four points in the AO MBR process (Figure 1). In total 16 sets of influent, anoxic and oxic mixed liquor, and MBR effluent samples were collected monthly from December 2010 to March 2012. Trans-membrane pressure (TMP) was recorded as a parameter of membrane fouling when the samples were collected. Influent and effluent quality parameters during the study period are listed in Table 1. Additionally, to evaluate the effect of MLSS concentration on virus removal in the oxic tank (i.e., activated sludge and membrane filtration processes), three additional sets of samples were collected 1–3 days after the MLSS concentration was reduced to 50–60% of an normal operation level in the oxic tank (Table 2). The samples were transported to the laboratory and stored at −20°C until processed.

2.2. SS, pH, and electrical conductivity

Suspended solids (SS) concentration was measured according to the standard protocols of the Japan Sewage Works Association (JapanSewageWorksAssociation, 1997). Briefly, a sample was filtrated with a glass fiber filter (1 μm pore size, 47 mm diameter, Whatman GF/B, GE Healthcare, Japan), and the filter was dried in an oven at 105°C for 2 h. pH and electrical conductivity (EC) were measured with respective meters (HM-30P and CM-31P, DKK-TOA, Japan).

2.3. Process control virus

An MNV strain S7-PP3, kindly provided by Dr. Yukinobu Tohya (Nihon University, Japan), was used as a process control virus for indigenous virus recovery from wastewater samples. MNV was
prepared using RAW 264.7 cells (ATCC TIB-71) according to the procedure described by Kitajima et al (Kitajima et al., 2010).

2.4. Preparation of viral RNA

Ten microliters of MNV stock solution (geometrical mean of 5.7×10^6 copies; geometrical standard deviation of 0.98) were added to 50 mL of all samples. Both the anoxic and oxic mixed liquor samples were gently stirred for 30 min at room temperature, resulting in adsorption of some MNVs to the suspended solids. Then the samples were centrifuged at 9,000 × g for 10 min at 4°C, and the pellet and supernatant were regarded as solid and liquid phases, respectively, in this study. Viral particles in the solid phase were eluted by a vortex mixing in 50 mL of phosphate/citric acid buffer with 10% beef extract and centrifugation at 10,000 × g for 30 min at 4°C according to the method of the US EPA (U.S.EPA, 2003). The eluted viruses, viruses in the liquid phase, influent and effluent water samples were concentrated with the polyethylene glycol (PEG) precipitation method (Lewis and Metcalf, 1988). Briefly, PEG 6000 (Wako Pure Chemical Industries, Japan) and NaCl was added to 50 mL of samples to yield a final concentration of 8.0% (wt/vol) and 2.3% (wt/vol), respectively, and the solution was gently stirred overnight at 4°C. The solution was transferred to a 50-mL centrifuge tube and centrifuged at 9,000 × g for 30 min at 4°C. The supernatant was discarded and the pellet was suspended in 5 mL of deionized distilled water with a vortex mixer. Viral RNA was extracted from 200 μL of the virus concentrate using a NucliSENS kit (bioMérieux, Tokyo, Japan) according to the manufacturer’s instructions. All washing steps were performed using the NucliSENS miniMAG, and viral RNA was recovered in 50 μL of elution buffer. The extracted RNA was stored at −80°C. The extracted RNA was treated with Recombinant DNase I (Takara Bio Inc., Japan). Twenty microliters of the reaction mixture contained 10 μL of the extracted RNA, 2 μL of DNase I Buffer, 2 μL of Recombinant DNase I, and 0.5 μL of Recombinant RNase Inhibitor (Takara Bio
Inc.). Thermal conditions consisted of enzyme reaction at 37°C for 30 min and inactivation of the enzyme at 80°C for 10 min.

2.5. Quantification of viral genome

Complementary DNA (cDNA) was obtained through a reverse transcription (RT) reaction using a PrimeScript RT reagent Kit (Takara Bio Inc.). Twenty microliters of the reaction mixture contained 4 μL of DNase-treated RNA, 4 μL of PrimeScript Buffer, 1 μL of PrimeScript RT Enzyme Mix I, 2.5 μM oligo dT primer, and 20 μM random hexamers. Thermal conditions consisted of RT at 37°C for 15 min and 42°C for 5 min, and inactivation of the enzyme at 85°C for 5 s.

The cDNA concentrations of MNV, EVs, NoV GII, and SaVs were determined with the quantitative real-time PCR method using an Applied Biosystems 7500 Real-time PCR System (Life Technologies Japan, Tokyo) and previously reported primers and probes listed in Table S1 (Kageyama et al., 2003; Kitajima et al., 2010; Loisy et al., 2005; Monpoeho et al., 2000; Oka et al., 2006). Each 25-μL PCR mixture contained 5 μL of cDNA, 12.5 μL of Premix Ex Taq (Perfect Real Time, Takara Bio Inc.), each primer and probe at the concentrations specified in Table S1. PCR conditions consisted of an initial denaturation at 95°C for 30 s, followed by 45 cycles of amplification with denaturation at 95°C for 15 s and annealing and extension at 60°C for 1 min. All amplification reactions were run in duplicate.

The cycle threshold (C_T) was defined as the cycle at which a significant increase in fluorescence occurred. The variation in the real-time PCR assay was generally at most 1 C_T units. When the difference in duplicate wells was >1.5 C_T units, we repeated the real-time PCR assay using triplicate wells or re-extracted viral RNA from the virus concentrate. The number of genome copies in each reaction tube was calculated by comparing the C_T value to a standard curve generated from a dilution series of plasmid containing each target region. Then the virus concentration in the sample was calculated based on the volume of viral RNA analyzed and was
reported per milliliter. A C_T value less than 40 was regarded as positive in this study, and the detection limits were 69, 29, and 40 copies/mL of sample, for EVs, NoV GII, and SaVs, respectively. The MNV recovery efficiency was not used to adjust the concentrations of indigenous viruses since the recovery of exogenously-added MNV and indigenous viruses may be different.

2.6. Statistical analysis

Pearson's correlation analysis was performed by using IBM SPSS Statistics Ver. 19 to assess the correlations of virus concentrations between sample types.

3. Results

3.1. SS, pH, and EC

Levels of SS, pH, and EC were summarized in Table 3. SS concentration in the influent fluctuated ranging from 36 to 195 mg/L (mean ± SD = 83 ± 35 mg/L), but pH and EC were stable (7.4 ± 0.4 and 42 ± 5.7 mS/m, respectively). The MLSS concentration in the oxic process ranged from 7,000 to 14,000 mg/L during a normal sampling campaign, which was comparable to other MBR processes where enteric virus removal was previously investigated (Ottoson et al., 2006; Sima et al., 2011). pH and EC in the anoxic mixed liquor (6.4 ± 0.3 and 63 ± 22 mS/m, respectively) were similar to those in the oxic mixed liquor (6.4 ± 0.2 and 66 ± 25 mS/m, respectively). The MBR effluent presented low SS (<1.0 mg/L), and pH and EC were stable (7.3 ± 0.4 and 31 ± 4.3 mS/m, respectively).

3.2. Recovery efficiencies of process control virus

To evaluate the recovery efficiencies of viral RNA sample preparation and the inhibitory effect in RT-PCR, MNV was added to the samples and its recovery rate was monitored. The MNV recovery
rate varied among the sample types but was relatively stable within a sample type. The highest
MNV recovery (72 ± 26%) was achieved for influent samples, whereas the lowest recovery (16 ±
8.8%) was obtained for MBR effluent samples. This result suggested that the PEG precipitation
method could efficiently recover viral particles from the samples containing a certain level of SS as
this method is based on flocculation.

The total MNV recovery efficiencies in the anoxic and oxic mixed liquor samples (liquid
and solid phases combined) were as high as in the influent samples. As for the anoxic mixed liquor
samples, total MNV recovery efficiency was 63 ± 26%, and 59 ± 25% of added MNV was found in
the liquid phase and 4.4 ± 4.1% in the solid phase. The added MNV was not efficiently adsorbed to
MLSS in 30-min incubation even though MNV was detected in all solid phase samples. The total
MNV recovery efficiency in oxic mixed liquor samples was similar to that in the anoxic mixed
liquor, presenting 71 ± 26% (65 ± 22% and 6.0 ± 7.7% in the liquid and solid phases, respectively).
Significant inhibition in RT-PCR was not observed partly because only a small volume of sample
was used for viral RNA sample preparation according to the preliminary experiments. Thus, the
indigenous viruses in the collected wastewater samples can be quantified without excessive bias.

3.3. Detection and quantification of EVs, NoV GII, and SaVs
Detection rates varied with the types of samples and viruses, and EVs, NoV GII, and SaVs
presented different behavior in the treatment processes. EVs were detected in the influent (detection
rate, 68%) throughout the sampling period at a concentration ranging from 1.5×10^2 to 1.2×10^5
copies/mL (geometrical mean of 1.1×10^4 copies/mL) except during the winter months in 2012
(Table 4 and Figure 2A), and seasonal variation of influent concentration was not clearly observed.
EV concentrations in the solid phase of anoxic mixed liquor are generally lower than those in the
liquid phase (Figure 2B), resulting in lower detection rates in the solid phase (47%) compared to
the liquid phase (74%, Table 4). The mean log reduction value between influent and anoxic mixed
liquor (the liquid and solid phases combined) was 0.40 log units. A significant correlation was observed between the concentrations in the influent and in the anoxic mixed liquor samples (Table S2). Pearson's correlation coefficients were 0.61 for the liquid phase samples (p<0.05, N=13) and 0.92 for the solid phase samples (p<0.01, N=9). However, a large variation was observed in the difference between the liquid and solid phase concentrations (Figure 2B). Concentrations in the oxic mixed liquor samples were weakly correlated with the influent concentration, and strongly followed those in the anoxic mixed liquor (correlation coefficient of 0.93, p<0.01, N=13, Table S2). No significant difference was observed between the concentrations in the anoxic and oxic mixed liquor samples, because almost all the EVs were rejected by the membrane and the mixed liquor was recycled. EVs were detected in the MBR effluent samples only twice in March and April 2011 (1.2 × 10^3 and 6.1 × 10^2 copies/mL, respectively, Figure 2A). Although EVs were found in the oxic mixed liquor samples from June to December 2011 (Figure 2C), they were never detected in the MBR effluent in this period. Two of the three additional MBR effluent samples were positive for EVs, when the MLSS concentration was reduced to half of the normal operation concentration (Table 2), suggesting that MLSS may affect the EV removal by the membrane. Log removal efficiency of EVs in the whole process (i.e., comparing the influent and MBR effluent concentrations) ranged from >0.3 to >3.2 assigning the detection limit (69 copies/mL) to negative samples (Table S5). When EV was detected in the MBR effluent, mean removal efficiency was 1.6 ± 0.4 log units (N=4).

NoV GII was detected in 95% of the influent samples and 26% of the other respective samples including the MBR effluent (Table 4). Seasonal variation of NoV GII concentration in the influent was weakly observed, with the maximum concentration up to 10^4 copies/mL from December 2010 to February 2011 and the minimum concentration in August (<10^2 copies/mL, Figure 2D). The geometrical mean of influent concentrations was 1.2 × 10^3 copies/mL, which was approximately 1-log lower than that of EVs. Concentrations of NoV GII in the anoxic mixed liquor
samples were also lower than those of EVs, resulting in a number of negative samples except the first winter months (Figure 2E). The mean log reduction value between influent and anoxic mixed liquor (the liquid and solid phases combined) was 1.3 log units, which was larger than that of EVs. A significant correlation was not observed in concentrations between the influent and the anoxic mixed liquor (Table S3), which was different from EVs. Concentrations in the oxic mixed liquor samples were similar to those in the anoxic mixed liquor (correlation coefficient of 0.92, p<0.05, N=5). NoV GII concentrations in the solid phase were generally equal to those in the liquid phase (Figure 2E and 2F), which was inconsistent with the case of EVs. NoV GII was found twice in the MBR effluent samples collected in winter months. It is notable that all three additional MBR effluent samples were positive for NoV GII at the concentration ranging from 4.5 × 10^1 to 1.1 × 10^2 copies/mL (Figure 2D). Log removal efficiency of NoV GII in the whole process ranged from >0.2 to >3.4 (Table S5), and mean value was 1.3 ± 0.8 log units when it was detected in the MBR effluent (N=5).

SaVs were detected in 68% of the influent samples, 37% of the liquid and solid phases of the anoxic mixed liquor, 42% of the liquid and solid phases of the oxic mixed liquor, and none of the MBR effluent (Table 4). The influent samples presented high SaV concentrations up to 10^5 copies/mL (geometrical mean of 2.7 × 10^4 copies/mL) except those from September 2011 to January 2012 (Figure 2G). Influent concentrations showed weak seasonal variation as was observed for NoV GII. Despite the detection rates and concentrations comparable to EVs in the influent, SaVs were less frequently found in the anoxic and oxic mixed liquor samples and never detected in the MBR effluent. SaV concentrations in the solid phase were generally higher than those in the liquid phase (Figure 2H and 2I), which was different from the cases of EVs and NoV GII. As observed for NoV GII, SaV concentrations in the anoxic and oxic mixed liquor samples did not follow those in the influent, and the mean log reduction value between influent and anoxic mixed liquor was 1.1 log units. Unlike with EVs and NoV GII, no correlation was observed
between the anoxic and oxic mixed liquor concentrations (Table S4). Log removal efficiency of SaVs in the whole process ranged from >1.3 to >4.1 (Table S5).

During the study period, TMP ranged from 3 to 20 kPa (mean ± SD = 8.2 ± 6.1 kPa, Table S5), and variation of membrane fouling degree was observed. Passages of EVs and NoV GII through the PVDF microfiltration membrane were observed regardless of the membrane fouling degree (TMP range, 4–20 kPa, Table S5 and S6). The membrane module was replaced once at the end of January 2011 (9 days before the sample collection in February) and was cleaned with sodium hypochlorite solution once in April (43 days before the sample collection in May), which had no impact on all virus concentrations in the MBR effluent.

4. Discussion

In this study, the removal performance of human enteric viruses, EVs, NoV GII, and SaVs, of a pilot-scale AO MBR process was investigated in relation to virus association with MLSS for over a year. We observed different removal properties among viral families or genera in the activated sludge and membrane filtration processes, and rejection of viruses by the membrane was not related to the membrane fouling degree. When the MLSS concentration in the oxic tank equipped with a submerged membrane module was reduced to 50–60% of a normal operation level, passages of EVs and NoV GII through the membrane were observed. The results suggest that virus adsorption to activated sludge plays a significant role in virus removal by a PVDF microfiltration membrane. EV concentrations in the solid phase of mixed liquor were generally lower than those in the liquid phase (Figure 2B). In contrast, NoV GII and SaV concentrations in the solid phase were equal to or higher than those in the liquid phase (Figure 2E and 2H), and higher log reduction values (1.3 and 1.1 log units, respectively) were observed between influent and anoxic mixed liquor compared to EVs (0.40 log units). The different behavior of EVs and caliciviruses (i.e., NoV GII
and SaVs) cannot be explained by the environmental stability of each virus, since it has been
demonstrated that NoVs are more persistent than EVs (coxsackievirus B1 and polioviruses) in
environmental water (Bae and Schwab, 2008; Charles et al., 2009). Although there is no report of
SaV stability in environmental water, SaVs and human NoV showed similar resistance to heat and
chlorine inactivation (Wang et al., 2012), and it is likely that they are similarly more stable than
EVs in environmental water. Therefore, our observations indicate that EVs were less associated
with activated sludge than caliciviruses resulting in the lower EV removal in the activated sludge
process. Simmons et al. reported a similar observation in a full-scale MBR plant, where EV
concentration increased in the membrane influent (mixed liquor) sample compared to the plant
influent due to returning sludge, whereas NoV GII was significantly reduced in the activated sludge
process by more than 2 log units (Simmons et al., 2011). Sima et al. investigated NoV
concentrations in oxic mixed liquor and waste sludge samples and deduced the degradation of
NoVs in the activated sludge process since buildup of NoVs was not observed in the reactor with
SRT of 20–30 d (Sima et al., 2011), which also supports our observations. It is highly likely that
NoV GII and SaVs, which were adsorbed to MLSS more efficiently than EVs, were degraded by
biomass and/or removed as waste sludge in the pilot-scale AO MBR process.

Surface charge and hydrophobicity play a significant role in the adsorptive behavior of
viruses to solid surfaces (Gerba, 1984), and coxsackieviruses and echoviruses have presented the
different adsorption efficiencies (67–99.8%) to activated sludge (Gerba et al., 1980). Although
there is no report of calicivirus adsorptive behavior to activated sludge, NoV GI and GII presented
different adsorptive properties to particles in untreated wastewater (da Silva et al., 2008). Therefore,
we speculate that different pI of EV, NoV, and SaV strains is one of the factors contributing to the
different behavior of EVs and caliciviruses observed in the reactors. However, further study would
have to be conducted to determine i) distribution of viral types or strains, ii) the net surface charges
of viruses at pH 5.8–7.2 in the anoxic and oxic mixed liquor samples (Table 3), iii) the effect of
virus-particle association in untreated wastewater on viral adsorptive behavior to activated sludge. In the present study, we hypothesized that an association with MLSS would play an important role in virus removal both in activated sludge and membrane filtration processes, and samples were collected after the MLSS concentration was reduced. In those additional MBR effluent samples, EVs and NoV GII were simultaneously detected (Figure 2A and D). The passages of EVs and NoV GII were not related to the membrane fouling degree (TMP range, 4–20 kPa, Table S5), and the replacement and chemical cleaning of membrane module did not change the virus removal performance. These results suggest that biofilm accumulation (called as dynamic membrane) is not the dominant mechanism for the removals of EVs, NoV GII and SaVs, but MLSS concentration can be the important parameter. However, SaVs were not detected in the MLSS-reduced MBR effluent samples, and this leaves the possibility that the association with MLSS may not be the dominant removal mechanism for all enteric viruses. Since the additional sampling was conducted only in winter months, continuous investigations are required to confirm our observations.

Interestingly, EVs were not detected in the routinely collected MBR effluent samples from June to November 2011, although they were found in the influent and mixed liquor samples at high concentrations (Figure 2A–C). This observation could be possibly explained by the following two reasons. One is seasonal variation in the amount and composition of extracellular polymeric substances (EPS) and soluble microbial products (SMPs) in mixed liquor and membrane foulants due to temperature change (Gao et al., 2013; Ma et al., 2013; Miyoshi et al., 2009). The other reason is seasonal variation in prevalent EV types. The removal efficiency of EV from wastewater is thought to be dependent on the types and specific strains of EV. Soga-Momoki et al. reported that certain types of coxsackieviruses, echoviruses, and enteroviruses causing HFMD, herpangina, or respiratory illness were prevalent between June and November based on five year surveillance records in Japan (Soga-Momoki, 2009). Interactions between certain EV types and EPS or SMPs in
mixed liquor must be investigated in the future.

It is notable that the removal property of SaVs in the membrane filtration process was different from EVs and NoV GII since SaVs were not detected in any MBR effluent samples (Figure 2G). Although SaVs and NoVs are in the same family Caliciviridae, there may be different adsorptive properties to activated sludge or membrane foulants. It has been shown that human NoVs bind to histo-blood group antigens (HBGAs), which are considered susceptibility factors and cell attachment factors in NoV infections (Shanker et al., 2011), but SaVs do not recognize HBGAs (Shirato-Horikoshi et al., 2007). Different HBGА-binding properties or different adsorptive behavior in response to solution chemistry have been reported depending on NoV genotypes or strains, which is probably attributed to a different arrangement of amino acid residues on the capsid surface (da Silva et al., 2011; Shirato et al., 2008). We previously demonstrated specific adsorption of NoV particles to enteric bacteria via HBGА-like substances contained in the extracellular region (Miura et al., 2013). If mixed liquor or membrane foulants contain virus-specific adsorbents produced by bacteria (e.g., HBGА-like EPS for NoVs), this could also be a reason for the different virus removal properties in wastewater treatment processes. In fact, it has been reported that NoV GII is more efficiently removed in conventional wastewater treatment processes than NoV GI (da Silva et al., 2007; Hata et al., 2013; Nordgren et al., 2009).

The removal efficiencies of EVs (>0.3 to >3.2 log units), NoV GII (>0.2 to >3.4 log units), and SaVs (>1.3 to >4.1 log units) observed in this study were within the range of previously reported values. Ottoson et al. reported mean log removals of 1.79 ± 0.55 for EVs and 1.14 ± 0.88 for NoVs in the pilot-scale MBR with a 0.4 μm pore size membrane (Ottoson et al., 2006). Sima et al. reported log removals of 0.9 to >6.8 for NoVs and >1.7 to >4.1 for SaVs in the full-scale MBR with a 0.45 μm pore size membrane (Sima et al., 2011). Since concentrations of human enteric viruses in MBR effluent samples are frequently below their detection limits, log removal efficiency has been calculated by using the detection limit of each assay (Sima et al., 2011; Simmons et al.,
Therefore, log removal efficiency greatly varies depending on the influent virus concentrations and the detection limit of effluent samples, making it difficult to compare removal efficiencies among viruses or studies. In the present study, difference of log removal efficiencies in relation to size of viruses was not clearly observed partly because the difference between EVs (30 nm) and caliciviruses (27–40 nm) is not obvious. Simmons et al. reported greater removal of human adenoviruses (90–100 nm) compared to EVs and NoV GII in a membrane filtration process, and virus size may affect removal efficiency; however, higher membrane influent concentration was also observed for human adenoviruses (Simmons et al., 2011). When virus concentration in a treated wastewater sample is below the detection limit, accurate estimation of the removal efficiency is needed to evaluate the factors affecting the virus removal efficiency (Kato et al., 2013).

Furthermore, different recovery efficiencies of indigenous viruses between influent and effluent samples can also affect the estimation of removal efficiency. If the recovery rate of MNV is equal to that of indigenous viruses, the total removal efficiency could be lower than the estimated values due to the lower MNV recovery in the MBR effluent (16 ± 8.8%) compared to the influent (72 ± 26%).

We used the PEG precipitation method to concentrate viral particles in all the wastewater samples with MNV as a process control. MNV recovery efficiencies were stable in each sample type and allowed us to quantify indigenous viruses without excessive bias. Sima et al. also applied the PEG precipitation method for wastewater samples using mengovirus as a process control (Sima et al., 2011). They reported recovery efficiencies of less than 10% for the mixed liquor samples (the liquid and solid phases combined) collected in an aeration tank (Sima et al., 2011), whereas MNV recovery in the oxic mixed liquor samples was 71 ± 26% in the present study. This difference could be explained by different interfacial characteristics between mengovirus and MNV. Virus recovery from environmental samples and quantitative genome detection are still challenging because of low concentrations of human enteric viruses and the presence of inhibitory substances (Miura et al.,...
In order to improve the assay sensitivity, we must sample higher volumes of water samples, efficiently concentrate, and extract RNA.

We for the first time presented different removal properties of EVs, NoV GII, and SaVs in the pilot-scale AO MBR process in relation to virus association with MLSS. Rejection of viruses by the dynamic membrane was not the dominant removal mechanism, but the association with MLSS was significant for the removal of EVs, NoV GII, and SaVs. This indicates that appropriate control of MLSS concentration can contribute to efficient virus removal in an MBR process. In this study, we selected EVs, NoV GII, and SaVs, which are the most important waterborne human pathogenic viruses of public health concern. The selected viruses are all non-enveloped and single-stranded RNA viruses of similar size (27–40 nm), and wastewater samples were collected for 16 months with only one summer period. Human enteric viruses contained in wastewater are highly diverse, and circulating virus strains vary from year to year. Since each virus removal property may be different, further studies are needed to accumulate data on other enteric virus removal in an MBR process and to improve the reclaimed wastewater quality.

5. Conclusions

EVs, NoV GII, and SaVs were detected in the influent wastewater samples throughout the sampling period at geometrical mean concentrations of 4.0, 3.1, and 4.4 log copies/mL, respectively, and behavior of enteric viruses in the pilot-scale AO MBR treatment processes was different among viruses. Our work suggests important implications as follows.

- EV types or strains contained in the collected samples were less associated with MLSS, which may explain the lower concentrations in the solid phase of mixed liquor than the liquid phase and the limited EV removal in the activated sludge process compared to NoV GII and SaVs. Removal efficiencies of EVs in the whole process ranged from >0.3 to >3.2 log units.
NoV GII was highly associated with MLSS and was removed efficiently, resulting in the lower detection rate in mixed liquor samples. Removal efficiencies of NoV GII in the whole process ranged from >0.2 to >3.4 log units.

SaVs were highly associated with MLSS, which may explain the efficient reduction in the activated sludge process and the complete rejection by the membrane. Removal efficiencies of SaVs in the whole process ranged from >1.3 to >4.1 log units.

Rejection of viruses by the membrane was not related to TMP which was monitored as a parameter of membrane fouling, and dynamic membrane was not the dominant removal mechanism for EVs, NoV GII, and SaVs in the pilot-scale AO MBR treatment processes.

When MLSS concentration was reduced to 50–60% of a normal operation level, passages of EVs and NoV GII through a PVDF microfiltration membrane were observed; suggesting that virus adsorption to MLSS plays an important role in virus removal by an MBR.

Acknowledgements

We are very grateful to Dr. Yukinobu Tohya (Nihon University, Japan) for providing the murine norovirus strain S7-PP3. We also thank Ms. Rie Nomachi (Hokkaido University) for her technical support during virus concentration and quantification. This study was supported by the Japan Science and Technology Agency (JST) through Core Research for Evolutional Science and Technology (CREST), and the Japan Society for the Promotion of Science (JSPS) through JSPS Research Fellowships for Young Scientists (23-4434).

References

Ma, Z., Wen, X., Zhao, F., Xia, Y., Huang, X., Waite, D. and Guan, J. (2013) Effect of temperature...
variation on membrane fouling and microbial community structure in membrane bioreactor.

Bioresource Technology 133(0), 462-468.

Bioresource Technology 102(8), 5004-5009.

U.S.EPA (2003) Environmental Regulations and Technology, Control of Pathogens and Vector

Table 1. Influent and effluent quality of the pilot-scale anoxic-oxic MBR process.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Mean ± SD (range)</th>
<th>Influent</th>
<th>MBR effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOD</td>
<td>mg/L</td>
<td>80 ± 33 (8.1–214)</td>
<td>0.9 ± 1.4 (0–7.5)</td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>mg/L</td>
<td>71 ± 34 (39–243)</td>
<td>4.5 ± 1.5 (3.3–11)</td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>mg/L</td>
<td><100</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>T-N</td>
<td>mg/L</td>
<td>26 ± 5.9 (13–52)</td>
<td>11 ± 4.5 (4.8–33)</td>
<td></td>
</tr>
<tr>
<td>T-P</td>
<td>mg/L</td>
<td>3.0 ± 1.0 (1.4–7.6)</td>
<td>1.6 ± 1.0 (0.2–6.3)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Change of MLSS concentrations for the collection of additional samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration change</th>
<th>Sample collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date</td>
<td>MLSS [mg/L]</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>Before</td>
</tr>
<tr>
<td>Additional 1</td>
<td>Dec. 13, 2010</td>
<td>13,000</td>
</tr>
<tr>
<td>Additional 2</td>
<td>Jan. 25, 2011</td>
<td>9,000</td>
</tr>
</tbody>
</table>
Table 3. Levels of SS, pH and EC in wastewater samples.

<table>
<thead>
<tr>
<th></th>
<th>Influent</th>
<th>Anoxic mixed liquor</th>
<th>Oxic mixed liquor</th>
<th>MBR effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS [mg/L]</td>
<td>83 ± 35</td>
<td>Not measured</td>
<td>8,700 ± 2,200</td>
<td><1.0</td>
</tr>
<tr>
<td></td>
<td>(36–195)</td>
<td></td>
<td>(4,800–14,000)</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.4 ± 0.4</td>
<td>6.4 ± 0.3</td>
<td>6.4 ± 0.2</td>
<td>7.3 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>(6.8–8.4)</td>
<td>(5.8–6.9)</td>
<td>(6.0–7.2)</td>
<td>(6.4–8.3)</td>
</tr>
<tr>
<td>EC [mS/m]</td>
<td>42 ± 5.7</td>
<td>63 ± 22</td>
<td>66 ± 25</td>
<td>31 ± 4.3</td>
</tr>
<tr>
<td></td>
<td>(23–47)</td>
<td>(36–96)</td>
<td>(36–110)</td>
<td>(21–37)</td>
</tr>
</tbody>
</table>

Table 4. Detection rates of viruses in wastewater samples.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Detection rate [%]</th>
<th>Influent</th>
<th>Anoxic</th>
<th>Oxic</th>
<th>MBR effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Liquid</td>
<td>Solid</td>
<td>Liquid</td>
<td>Solid</td>
</tr>
<tr>
<td>EVs</td>
<td>68</td>
<td>74</td>
<td>47</td>
<td>74</td>
<td>47</td>
</tr>
<tr>
<td>NoV GII</td>
<td>95</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>SaVs</td>
<td>68</td>
<td>37</td>
<td>37</td>
<td>42</td>
<td>42</td>
</tr>
</tbody>
</table>
Figure 1. Scheme of the pilot-scale anoxic-oxic MBR process and sampling points (1)–(4).

Pre-screened domestic wastewater was fed as an influent, and the bioreactors consisted of the anoxic and oxic tanks. The oxic tank was equipped with a submerged hollow-fiber PVDF membrane module.
Figure 2

Figure 2. Concentrations of EVs (A–C), NoV GII (D–F), and SaVs (G–I) in wastewater samples. Black squares, influent; white squares, MBR effluent; grey diamonds, solid phase of anoxic mixed liquor; white diamonds, liquid phase of anoxic mixed liquor; grey triangles, solid phase of oxic mixed liquor; white triangles, liquid phase of oxic mixed liquor; dashed line, detection limit; ND, not detected.
Different removal properties of viruses in an MBR process

Different adsorptive behavior of viruses to MLSS